

GHI Electronics, LLC - Where Hardware Meets Software

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 1 OF 69 AUGUST 2, 2018

CONTENTS

Introduction ... 3

The Author .. 3

Global Thinking .. 3

License ... 3

The Concept .. 3

STEM ... 4

The Philosophy .. 4

Two Paths .. 5

Start Making .. 5

Go Beyond ... 6

Going Beyond the Beyond! ... 7

Start Making .. 8

Copying to the BrainPad .. 10

JavaScript... 16

Display Fun .. 18

Playing Musical Notes ... 19

Using the Buttons .. 20

Is it Dark in Here? .. 23

Hearing Test .. 25

Servo Motors ... 28

Positional Servo Motors .. 29

Continuous Servo Motors ... 32

Christmas Lights .. 35

Conclusion ... 40

Go Beyond ... 41

TinyCLR OSTM ... 41

Visual Studio .. 41

System Setup ... 42

Hello World ... 42

Non-ending Programs ... 46

BrainPad Libraries ... 47

Bouncy Ball .. 50

A Christmas Light ... 54

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 2 OF 69 AUGUST 2, 2018

Seeing the Light ... 54

Multitasking .. 56

Call me ... 58

Scary Wires .. 60

Conclusion ... 64

Expandability ... 65

MikroElektronika Click BoardsTM ... 65

Elenco® Snap Circuits® .. 66

BreadBoards .. 67

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 3 OF 69 AUGUST 2, 2018

INTRODUCTION

The BrainPad is designed as a powerful educational STEM tool that can be used to teach everyone, from kids to

college students and professionals.

This free e-book is provided as a beginner’s guide to the world of the BrainPad. More materials can be found on

https://www.brainpad.com.

THE AUTHOR

Gus Issa is founder and CEO of GHI Electronics. He started tinkering with programming and electronics as a

teenager. Early on, he struggled to educate himself with limited resources and no Internet access. This struggle,

along with the profound impact education has had on his life, have made him passionate about teaching others.

He has spent countless hours of his own time while leveraging the resources of his company to create an

affordable way to share his knowledge, resulting in the BrainPad.

GLOBAL THINKING

We work hard on making the BrainPad available to every culture and language. If you feel up to the challenge and

want to translate this book to your language, please let us know through https://www.brainpad.com/contact-us.

LICENSE

This book is free and licensed under CC BY-SA 4.0. You are free to edit and print, repurpose and reuse. Learn more

about what you can and can’t do here https://creativecommons.org/licenses/by-sa/4.0/.

THE CONCEPT

The BrainPad is self-explanatory. It logically shows how computers work. There are four inputs that are routed to

the brain. The brain (the processor) then thinks about what is happening to control the four outputs.

https://www.brainpad.com/
https://www.brainpad.com/contact-us
https://creativecommons.org/licenses/by-sa/4.0/

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 4 OF 69 AUGUST 2, 2018

STEM

“STEM” stands for Science, Technology, Engineering, and Mathematics. The STEM acronym was introduced in 2001

by the U.S. National Science Foundation. STEM is now one of the most talked about topics in education. STEM

education, however, is more than just these four fields of study. The STEM educational approach is aimed at

connecting classroom learning to the real world by emphasizing communication, collaboration, critical thinking,

and creativity while teaching the engineering design process. The term “STEAM” is the same as STEM with

additional emphasis on the arts.

THE PHILOSOPHY

STEM education requires an evolving platform, not a toy. The BrainPad evolves to match your skill level. Many toys

are marketed as STEM tools, but most lack the versatility to keep students engaged for any length of time. The

BrainPad consolidates programming (from beginner to professional), electronics, engineering, robotics, and more

into an inexpensive platform that can be used from grade school through college. It is backed by our 15 years of

professional engineering experience. The same tools commercial customers use to program our industrial

controllers can also be used to program the BrainPad. No other STEM platform can lead students from drag and

drop block programming to professional programming and engineering like the BrainPad.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 5 OF 69 AUGUST 2, 2018

TWO PATHS

The BrainPad provides two paths for learning programming called Start Making and Go Beyond. As you may have

guessed, the first option makes it very easy to “Start Making” projects and the second option takes you beyond

and lets you use the same programming tools that are used by professionals.

START MAKING

With the Start Making option there is nothing to install on your computer -- everything works through your

Internet browser using Microsoft MakeCode. The Go Beyond option requires some setup and software installation.

The most popular option to go beyond MakeCode is Microsoft Visual Studio.

With Microsoft MakeCode (Start Making), you can program by simply arranging blocks and optionally by typing

JavaScript code right into your web browser. Here is a program that sets the LightBulb to blue and then to red

every second, and it does this “forever”.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 6 OF 69 AUGUST 2, 2018

The included simulator (shown below) is basically a virtual BrainPad that runs your programs right on your

computer screen. You can see it at the left side of the Microsoft MakeCode Window. The simulator allows you to

try programs right in your browser without loading the program onto the BrainPad. This is also an excellent option

if you haven’t received your BrainPad yet.

GO BEYOND

Things get more serious with the Go Beyond option. Here you will setup a computer with Microsoft Visual Studio

to code and debug programs running on the BrainPad.

Thanks to GHI Electronics TinyCLR OSTM, the BrainPad can be .NET programmed in C# and Visual Basic. Full

debugging capabilities are included as well, such as stepping through code, breakpoints and inspecting variables at

runtime. You will be programming the BrainPad the same way professionals program a PC or a phone app. This

book will introduce you to both paths.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 7 OF 69 AUGUST 2, 2018

GOING BEYOND THE BEYOND!

The BrainPad can also be programmed with other options that are not documented in this book. For example, the

Arduino tools https://www.arduino.cc, MicroPython https://www.micropython.org and Arm Mbed

https://www.mbed.com.

https://www.arduino.cc/
https://www.micropython.org/
https://www.mbed.com/

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 8 OF 69 AUGUST 2, 2018

START MAKING

Enough talking – let's start having fun and make some projects! We will be using Microsoft MakeCode so head on

to https://makecode.brainpad.com/. The website includes a lot of material and projects, but we will just dig right

into starting our own project. Go ahead and click the New Project button.

Now, from under the LIGHT BULB option in the menu, drag the block “set light bulb to” and place it into the

“forever” block. The forever block is used for any code that you want running all the time. The instructions within

the forever block will always execute while the BrainPad has power. Once all the instructions have executed, the

BrainPad runs the code again starting with the first instruction in the forever block. This is known as an infinite

loop and is used often in computer programming.

https://makecode.brainpad.com/

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 9 OF 69 AUGUST 2, 2018

Repeat the same step but in the second block click on the color oval to change the color. This is what you should

have so far:

The program we have created will set the Light Bulb to red and then change it to blue repeatedly, forever!

However, if you look at the simulator, the Light Bulb may not work as expected. If you load the program on the

BrainPad itself, it will also not work properly, but why? You simply did not tell it how long to wait before changing

the Light Bulb color. It is now changing color too quickly to see the individual colors.

From under the LOOPS menu, drag the “pause” block.

We will need a pause after the Light Bulb turn red and one after it turns blue. Let’s also change the pause time to

one second.

Observe the simulator to verify the Light Bulb is working as expected. Not bad right? How about we load this

program on the BrainPad now?

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 10 OF 69 AUGUST 2, 2018

COPYING TO THE BRAINPAD

The process of copying a program onto the BrainPad is easy but can be tricky the first time you do it. First, you

must connect the BrainPad to your computer using a Micro-USB cable. By the way, you can use Windows, a

Chromebook, a Mac, or almost anything with a modern web browser and a USB port.

A Micro-USB cable should have been included with your BrainPad. You might also have an extra one at home. If

you don’t have one, they are readily available. Micro-USB cables are even sold at most gas stations!

The smaller end of the USB cable plugs into the BrainPad.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 11 OF 69 AUGUST 2, 2018

The larger end of the cable plugs into your computer.

When the BrainPad is connected to your computer the red power LED (PWR) should be on.

Go back to the browser with the program we made earlier. Click the download button and save the file on your

computer.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 12 OF 69 AUGUST 2, 2018

If you are using Microsoft Edge, you should see a dialog box like the one shown below:

Click the save button and then the “Open folder” button in the next dialog box to show the downloaded file.

The file will be highlighted. You can right click on the file to copy it.

If you are using the Chrome browser, the file will be shown at the lower left corner of the screen:

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 13 OF 69 AUGUST 2, 2018

Click on the small up arrow and then select “Show in folder.”

The downloaded file will be highlighted. You can right click on the file to copy it.

With either browser, Microsoft MakeCode does not delete your older files. If you download the same program

multiple times, a number will be added to the filename (for example “brainpad-Untitled (1).uf2”). Make sure you

copy the latest file. The latest file will be the highlighted file. It will also have the largest number in parenthesis and

the latest date/time.

Other browsers should be similar.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 14 OF 69 AUGUST 2, 2018

The BrainPad should be connected to your computer, and the red power light should be on. Press and hold the

reset button for about three seconds. The Light Bulb will turn green.

Your computer will now detect a USB storage device. It may take a minute for it to come up, but you will see a

window named "BrainPad" appear on your computer screen.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 15 OF 69 AUGUST 2, 2018

This window shows the contents of the memory inside the BrainPad. Now, right click and select paste to copy the

file into the BrainPad.

You can also drag and drop the downloaded file into the BrainPad window.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 16 OF 69 AUGUST 2, 2018

Once you do that, the Light Bulb will flicker for a moment and then the BrainPad will be running the loaded

program. Now things are getting more interesting!

JAVASCRIPT

Blocks are fun to start with, but once your programs get larger you will need to brave up and start typing code.

Don’t worry, you can do that whenever you are ready. One of the amazing features about Microsoft MakeCode is

how it translates blocks to JavaScript text-based code and text-based code back to blocks. Go back to the program

we made before and click the JavaScript tab.

Take a look at the code. Do you see the correlation between blocks and code? One thing that will not be clear to

you is the color as the code uses a hexadecimal value to represent color. Do you understand the rest of the code?

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 17 OF 69 AUGUST 2, 2018

Hexadecimal is a numbering system based on sixteen values per digit instead of the usual 10. Every digit in a

hexadecimal number can go from 0 to F instead of the 0 to 9 used for decimal (the numbers we use every day).

Counting from 0 to 16 in hexadecimal would look like this: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10.

The "Ox" the beginning of a hexadecimal number is put there to let you know for sure it is a hexadecimal number

to avoid any confusion. Hexadecimal numbers are also called "hex" for short and are also referred to as "base 16."

Binary is also called "base 2," and decimal is called "base 10." If this is confusing, don't worry. It takes some time to

become comfortable with different numbering systems.

When a hexadecimal number is used to refer to a color, the first two digits represent the amount of red in the

color, the second two digits the amount of green, and the third two digits the amount of blue. "00" means that

color is at zero intensity, or off. "FF" means the color is at full intensity. Bright red would be 0xFF0000. White is

0xFFFFFF.

What happens if you change one of the “setColor” methods to 0x000000? Let's try it.

Now switch back to Blocks to see what happened.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 18 OF 69 AUGUST 2, 2018

Looks like the color has changed from blue to black. You may have guessed that setting the Light Bulb to black is

the same as turning it off. You can see that in the simulator. The Light Bulb should turn red for a second and then

turn off for a second.

DISPLAY FUN

If you think the Light Bulb was exciting, wait until you try the display! If you still have the blocks from the previous

example, drag them back into the menu to delete them.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 19 OF 69 AUGUST 2, 2018

If you accidently deleted the forever block, you can simply bring it back from the LOOPS menu. From under the

DISPLAY menu, drag the “show image” block and select the first of the four “walking man” images. Add the other

three images and add a 10ms delay in between. There is no 10ms option in the pause block, but you can simply

type it in.

Our guy should be walking on the screen of the simulator by now. Go ahead and deploy it to the actual BrainPad.

PLAYING MUSICAL NOTES

From under MUSIC menu, you can find individual notes. . .

. . .or sounds

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 20 OF 69 AUGUST 2, 2018

Note how we used the "play sound until done" block. This block stops the rest of the program from running until

the sound is done playing. The "play sound" block (without "until done") starts executing the next block while the

sound is still playing. If you try both blocks you will see the results are very different.

USING THE BUTTONS

There are two ways to read the buttons. One is to simply check if the button is pressed and to take the appropriate

action when it is. The problem with this method is that you must check the button repeatedly to make sure you

don’t miss a button press. Another way is by letting the system do that for you, and in the “event” the button is

pressed automatically do something.

We will first try reading a button by using an event. I want to play the power up sound when the up button is

pressed and the power down sound when the down button is pressed.

Did you notice that there is no “forever” block in this example? You can still have a forever block in your code, but

it is not needed for this example. This is because the system will handle the “event” automatically when the button

is pressed.

Here is the JavaScript code that represent the above blocks:

input.buttonU.onEvent(ButtonEvent.Click, function () {

 music.playSound(music.sounds(Sounds.PowerUp))

})

input.buttonD.onEvent(ButtonEvent.Click, function () {

 music.playSound(music.sounds(Sounds.PowerDown))

})

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 21 OF 69 AUGUST 2, 2018

That worked well, but let's go back to our old trusty forever loop. We will create a program that does the exact

same thing but this time without events. To check “if” a button is pressed you will need a. . . Ready for it?. . . You

will need an “if” statement. You will find the if statement block under LOGIC. Drag it inside the forever loop.

The if statement checks the status of something that can be true or false. By default it shows “true,” but we want

to replace that with the button status. Drag the "button. . . is pressed" block from the input section to the "if. . .

then" block as shown below. Note that this is not the “on button” event we used before.

The above blocks will check the up button over and over. If the up button is being pressed at the same time the

button is checked, the program will execute any blocks inside the if statement.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 22 OF 69 AUGUST 2, 2018

Now add more blocks to make the program as shown below:

When you run this program, you will notice that the sound doesn't play properly until you release the button. The

reason for this is that every time the BrainPad detects the up or down button being pressed it starts playing a new

sound -- even if it is in the middle of playing the previous sound. The BrainPad will start playing the sound many

times each second while the button is being pressed.

There are two ways to fix this. One way is to replace the "button. . . is pressed" blocks with "button. . . was

pressed" blocks. The button was pressed block will be true if the button was pressed at least one time since the

button was last checked. Even if the button was pressed multiple times, it will only register as a single button

press. Pressing the up or down button while a sound is being played will interrupt the sound, but the sound won't

repeat while holding the button down.

The other way is to replace the "play sound. . ." Blocks with "play sound. . . until done" blocks. The play sound until

done block stops the program from doing anything else until the sound is done playing. Doing this stops the

program from checking for a button press or playing any other sounds until the current sound is done playing.

Using play sound until done will make it so the sound cannot be interrupted. The blocks are shown below.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 23 OF 69 AUGUST 2, 2018

IS IT DARK IN HERE?

Just like the buttons, you can read the light level and do something with it, or you can have an event that fires up

when it is bright or dark. However, reading a button is slightly different than reading a light.

A button is either pressed or not pressed. So, when I say, is the button pressed? Your answer will be true if it is

pressed and false if it is not. With the Light Sensor, the sensor gives the light level as a value. For programmers, this

is known as an analog value. Let’s read the light intensity and show it on the screen. We want this in a forever loop,

so it is constantly reading the light level and updating the screen.

Since you are an expert in using the if-statement, can you print bright and dark on the screen depending on the

Light Sensor reading? This is where things get a bit tricky, but I will explain. The if statement wants something that

is true or false, like "is the button being pressed?". The light level is not true or false -- it can be one of many

values. If you think about it, it is doesn’t make sense to say if light then do something. You have to say if the light is

brighter (or dimmer) than a certain level, then do something. Go to the LOGIC menu and add a comparison. Your if

statement will also now have and else statement. Take a look at this:

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 24 OF 69 AUGUST 2, 2018

What did that say? If the light level is less than 50 then print "Dark" on line one; otherwise, print "Light" on line

one.

Don't be afraid to visit the JavaScript tab often and see what the code looks like.

The simulator also works with the Light Sensor. Once the Light Sensor is added to a project, the simulator will start

showing an option to set the light level. First, start by making the simulator larger by clicking the full screen button.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 25 OF 69 AUGUST 2, 2018

The Light Sensor shows the light level which can be changed by dragging the line up and down. This is similar to

covering the actual light sensor on the BrainPad with your hand. As you drag the light level up and down, the

screen should alternately display "Light" and "Dark."

HEARING TEST

Human hearing extends from a low frequency of about 20 hertz (or cycles per second) to a high frequency of about

20,000 hertz. Dogs can hear higher frequencies than humans, with their hearing extending to 44,000 hertz. That's

why we can't hear high-pitched whistles made for dogs, but dogs hear them very well!

As we age, we lose the ability to hear very high frequencies. Also, noise induced hearing loss affects the ability to

hear high frequencies more than low frequencies. Want to see how high of a frequency you can hear? Let's find

out!

We need to write a program that uses a "variable." A variable is simply a named storage location that can hold a

piece of information. In this case, our variable will hold a number that represents the frequency we want to play

on the Buzzer.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 26 OF 69 AUGUST 2, 2018

Go to VARIABLES and click on the “Make a Variable. . .” button.

Now give your variable a name. I will use the name “freq”. This variable will store the frequency I want to play on

the Buzzer.

Now go to LOOPS and add an “on start” block. Whatever you add in this block will happen when the program

starts. Here we want to set the variable to 2000. We all can hear a frequency of 2000 hertz, so it's a good starting

point. The “set” block is found under VARIABLES.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 27 OF 69 AUGUST 2, 2018

Now, we need to make a sound at that frequency, but we also want to increase the frequency when the up button

is pressed and decrease the frequency when the down button is pressed. You will need the “change” block from

under variables. Set it to change by 100 when up is pressed and by -100 when down is pressed.

Now that we have the variables changing as we like, we can generate the sound (ring tone at) and print the

frequency on the screen (show number) as well.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 28 OF 69 AUGUST 2, 2018

One last thing! The noise can be very annoying so let’s stop the sound when the left button is pressed.

Here is the complete program.

SERVO MOTORS

A servo motor is basically a motor that has a small internal circuit that allows you to control the servo using simple

electrical pulses.

Servos have a three-pin connector that plugs directly into the BrainPad. Unfortunately, different servos often use

different colored wires. To identify the proper way to plug it in, always ignore the middle wire and look at the

wires on each side. The lighter color wire is the one that needs to be next to the ~ symbol printed on the BrainPad.

This is the signal wire, by the way.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 29 OF 69 AUGUST 2, 2018

Servo motors (or servos) are often used in radio-controlled models and can be found online and at local hobby

stores. These servos draw power from the BrainPad, which in turn draws power from your PC or a battery.

Therefore, we recommend using the smaller servos, called micro servos. Some of the larger servo motors draw too

much power to work properly without adding an additional power supply.

Servo motors are available as either continuous or positional servos. While they look identical, a positional servo

only turns to a given position and then holds that position until you tell it to move to another position. A

continuous servo motor will rotate continuously in one direction until it is told to either stop or reverse direction.

If you turn an unpowered positional servo by hand it will only move approximately one half of a rotation in either

direction before stopping. When you rotate a continuous servo in either direction it does not stop. Because of the

internal gearing of the servo, you will need to apply a little force to turn either type of servo motor.

POSITIONAL SERVO MOTORS

As stated above, a positional servo motor turns to the position (or angle) you tell it to and stays there until it is told

to move to another position. If you try to turn a servo motor by hand and it suddenly stops, it is a positional servo

motor. A pulse sent from the BrainPad tells the servo which angle or position to move to.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 30 OF 69 AUGUST 2, 2018

There are many ways to use a positional servo. In this example, we will create a large dial thermometer. The code

we use is very simple and doesn’t even use a variable!

In a forever loop add a "show value" block (found within the display section). In the first oval of the show value

block type " Temp (F)" within the parenthesis as shown below:

From the input category of blocks select the "temperature in °C" block and drag it into the second oval. Our

thermometer will display the temperature in Fahrenheit, so we changed the "°C" to "°F," but you can use Celsius if

you prefer. Now change the third oval to "3." This will print the temperature at the third line of the BrainPad

display. Your blocks should look like the screen shot below:

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 31 OF 69 AUGUST 2, 2018

So far, we have made a thermometer that will display the temperature on the BrainPad's display. Now we must

convert the temperature into an angle and send it to a servo motor to move the dial on our thermometer. Let's

make our thermometer work over a range of -20° Fahrenheit to 120° Fahrenheit.

We must convert the temperature (-20 to 120) into an angle (0 to 180). If you are not a mathematician, fear not!

MakeCode has a map block that will do the math for you. It is located under the MATH menu. We can complete

our program with the addition of one more line:

You will notice that the angle goes from a low of 180 to a high of 0 in our map block. Isn't this backwards? The

reason is that when the servo motor is set to 0 degrees the motor is turned to the right, and when the servo is set

to 180 degrees it is turned to the left. Mapping the temperature of -20° Fahrenheit to 0 degrees on our servo

would make the thermometer read backwards.

Here is finished thermometer made from a box and a straw glued to a servo motor.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 32 OF 69 AUGUST 2, 2018

CONTINUOUS SERVO MOTORS

The other type of servo motor is continuous, which, as the name indicates, can constantly turn. In this case, the

pulse sets the speed and direction of the motor. The BrainPad has connections for two motors. By controlling the

direction and speed of two rotational servos, you can easily move a robot. I searched Amazon.com for “continuous

micro servo with wheels” and found exactly what I need.

Now I could have mounted these on a cardboard box, but then I found this chassis by FEETECH.

Here is where things got a bit tricky! The robot comes with wheels and motors. The motors look like servo motors,

but they turned out to be not servos, just regular motors. I could tell because they only had two wires instead of

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 33 OF 69 AUGUST 2, 2018

three. The kit also came with a little circuit, which I then realized that circuit converts the regular motors into servo

motors!

This is doable but too complicated for most classrooms, so I put the circuit and the included motors aside and

decided to stick with proper continuous servo motors. My BrainPad fit perfectly on this chassis as if it was made for

it! I then found a flat phone charging battery that fit very well under the BrainPad.

This robot is finally ready to dance! To go forward, both motors need to turn forward. However, as one of the

motors is facing right and the other is facing left, one will have to turn opposite from the other for the wheels to

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 34 OF 69 AUGUST 2, 2018

turn in the same direction. This may sound confusing, but once you try it you will understand how it works. This

code will move both servos forward at full speed for one second, stop the motors for one second, and then repeat.

If the motors continue to turn when the speed is set to zero they need calibration. Most servo motors will have a

tiny adjustment inside. You will need a tiny screwdriver for this task.

Back to moving the robot forward. Do you see now that one motor is moving in the wrong direction? Change one

of the servos to go in reverse at full speed.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 35 OF 69 AUGUST 2, 2018

This work was the start of our “Sun Seeker” robot project. You can find it here

https://docs.brainpad.com/projects/sun-seeker.html. Make sure to watch the video. The robot uses the light

sensor to detect if the robot is in the sun or the shade. If it is in the shade, it will turn the robot until it finds a

sunny spot to move into.

CHRISTMAS LIGHTS

There are many things you can do with the devices built into the BrainPad, but at some point you might want to

wire the BrainPad to external components. While this is beyond the scope of this book, here is a quick introduction

to give you an idea of what is possible.

For this project we will use addressable LED (Light Emitting Diodes) strips. These LED strips consist of a line of lights

that can be controlled individually. They can be set to virtually any color and brightness combination using only

two wires. These wires send data pulses to the LEDs to command them as needed.

https://docs.brainpad.com/projects/sun-seeker.html

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 36 OF 69 AUGUST 2, 2018

What you need to find are strips with the APA102 controller. This controller uses a SPI bus, which is available on

the BrainPad. These strips are powered through different voltages. We will need 5V ones since we have access to

5V.

The strip can be cut to any needed size. To keep my setup from drawing too much power, I will cut it down to 25

LEDs. Now to soldering some wires. The arrow on the strip needs to point away from the side you solder the wires

to. The 4 wires are G-Ground, C-Clock, D-Data and 5V.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 37 OF 69 AUGUST 2, 2018

Ground (GND) and 5V are clearly marked on BrainPad’s expansion header. As for C-Clock, it should connect to SCK

on the BrainPad. D-Data should connect to MOSI on the BrainPad.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 38 OF 69 AUGUST 2, 2018

Each LED has three internal LEDs. They are red, blue and green. By controlling the levels of these base colors, you

can create any color you wish. There are several online tools to help with color picking. A good example can be

found at http://www.rgbtool.com. What you care about are the R, G, and B values.

Commands are sent to the LEDs using the BrainPad's SPI bus. To start writing a sequence of colors to the LED strip,

a start frame must be sent first. A start frame is just four zeros.

After the start frame, each LED requires four numbers to control it. The first number sets the global brightness for

the entire string of LEDs. We don't want to get bogged down in details, so we will always make the first number

255, which is full brightness.

After the first number, the remaining three numbers range from 0 to 255 and control the brightness of blue, green,

and red in each LED. To turn an LED bright blue, you would send 255, 0, 0. To turn an LED off, you would send

0,0,0. To make an LED bright white, you would send 255,255,255.

The LEDs in the strip are simply chained together. The first color is sent to the first LED, the second color to the

second LED, and so on. The LEDs will continue lighting in sequence until a new start frame is sent (four zeros). After

the start frame the sequence starts over with the first LED.

Because of the number of blocks needed, it is easier to switch to JavaScript and copy and paste the code. Copy and

paste the following code into the Microsoft MakeCode JavaScript editor:

let center = 12

let startRed = 0

let startGreen = 0

let startBlue = 0

http://www.rgbtool.com/

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 39 OF 69 AUGUST 2, 2018

let red = 0

let green = 0

let blue = 0

let data: Buffer = pins.createBuffer(4)

let dummy: Buffer = pins.createBuffer(4)

pins.spiFrequency(1000000)

function SendStart() {

 data[0] = 0

 data[1] = 0

 data[2] = 0

 data[3] = 0

 pins.spiTransfer(data, dummy)

}

function SendRGB(red: number, green: number, blue: number) {

 data[0] = 255

 data[1] = blue

 data[2] = green

 data[3] = red

 pins.spiTransfer(data, dummy)

}

forever(function () {

 startRed = Math.constrain(startRed + Math.randomRange(-20, 20), 0, 255)

 startGreen = Math.constrain(startGreen + Math.randomRange(-20, 20), 0, 255)

 startBlue = Math.constrain(startBlue + Math.randomRange(-20, 20), 0, 255)

 SendStart()

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 40 OF 69 AUGUST 2, 2018

 for (let index = 0; index <= 24; index = index + 1) {

 red = Math.constrain(startRed - Math.abs(index - center) * 16, 0, 255)

 green = Math.constrain(startGreen - Math.abs(index - center) * 16, 0, 255)

 blue = Math.constrain(startBlue - Math.abs(index - center) * 16, 0, 255)

 SendRGB(red, green, blue)

 }

})

If you did everything correctly you should see a brightly colored random light show. Try changing some

of the above code to see how it impacts the lighting.

CONCLUSION

Microsoft MakeCode and the BrainPad make a great combo to learn programming. The simulator means you can

easily test code without even having a BrainPad. Then you can load the program on the BrainPad by simply copying

the downloaded program file to the BrainPad window.

In the next chapters we will Go Beyond and code using C# or Visual Basic in Microsoft Visual Studio. Going Beyond

is optional but highly recommended once you feel comfortable with coding in MakeCode. In many cases, using

MakeCode is all you need.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 41 OF 69 AUGUST 2, 2018

GO BEYOND

You are here because you are interested in learning how to program like a pro. You will be using Microsoft Visual

Studio to program in C# or Visual Basic. You will have full debugging capabilities along with a feature rich

development environment.

Using Microsoft MakeCode is not a prerequisite but highly recommended. After all, we named it Start Making for a

reason. Either way, put on your seatbelt as you are about to go on a serious ride into true professional coding that

could turn into a future career!

TINYCLR OST M

For the BrainPad to work with .NET in C# and Visual Basic, you will need TinyCLR OS. This tiny operating system

does all the magic. It interprets compiled .NET assemblies and contains thousands of services like threading,

memory management, and debugging. This is the same .NET that's used to develop software for phones or

computers. TinyCLR OS is, however, made to run on small computers like the BrainPad, so it is a subset of the full

.NET standard.

VISUAL STUDIO

In theory, any .NET compiler can be used with TinyCLR OS; however, TinyCLR is only supported by Microsoft Visual

Studio. The community edition of Visual Studio is a full-featured programming environment that is considered one

of the best (if not the best) available -- and best of all it's free! To install Visual Studio, you will need a modern PC

with Windows. Windows version 10 is recommended.

Note that you can use the same Microsoft Visual Studio and the same skills you are learning programming the

BrainPad to start writing apps for many other devices, like smartphones, PCs and even Microsoft Xbox gaming

consoles!

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 42 OF 69 AUGUST 2, 2018

SYSTEM SETUP

The Microsoft Visual Studio Community edition is free, but it is not a toy and it is not small. You will need some

time to setup the system. Full instructions are found on the BrainPad documentation website at

https://docs.brainpad.com/go-beyond/system-setup.html.

In summary, you will need to download and install:

1. Microsoft Visual Studio Community edition. Do not forget to select the “.NET desktop development”

option during setup.

2. GHI Electronics TinyCLR OS project system

If you get lost you can always visit our forum for further assistance https://forums.ghielectronics.com/c/brainpad

Now that the PC is setup, you need to load TinyCLR OS on the BrainPad. Download the TinyCLR OS firmware file

from here https://docs.brainpad.com/resources/downloads.html and then load it on the BrainPad just like you

would load any file you created with Microsoft MakeCode:

1. Hold the reset button for about three seconds. The Light Bulb will turn green.

2. The PC will detect a storage device and open a window for it.

3. Save TinyCLR OS firmware onto the BrainPad storage device. You can also drag the file or copy and paste

the file into the BrainPad window.

HELLO WORLD

It is common when programming a new device, or when using new programming tools, to start with a very simple

program to make sure that everything is working properly. This program is usually called a "hello world" program.

Let's do that now.

Open Microsoft Visual Studio and start a new project. In the "File" menu select "New" and then "Project" (File >

New > Project).

There should be a TinyCLR option under Visual C#. If not, then you did not install the TinyCLR OS project system.

Here I've named the project "HelloWorld" and placed it on my desktop.

https://docs.brainpad.com/go-beyond/system-setup.html
https://forums.ghielectronics.com/c/brainpad
https://docs.brainpad.com/resources/downloads.html

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 43 OF 69 AUGUST 2, 2018

You can now load this empty program onto your BrainPad. It won’t do much, but it will verify that everything is

working as expected. Go ahead and plug in BrainPad and click Start.

Observe the activity showing in the output window. If that window is not visible, hit Alt+Ctrl+O on your keyboard

or select "Output" in the "View" menu (View > Output).

Now we are ready for BrainPad to say, "Hello World." We will first display "Hello World" in the Visual Studio output

window. Later we will show it on the BrainPad display. Add this line to the program, right under the left bracket ({)

following Main().

System.Diagnostics.Debug.WriteLine("Hello World");

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 44 OF 69 AUGUST 2, 2018

Note how Visual Studio automatically gives you word suggestions.

When done, the code should look like this:

Start the program and observe the output window again.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 45 OF 69 AUGUST 2, 2018

Did you find Hello World? That was a good start but not very exciting. Let's try printing multiple lines. Replace the

line we added before with these four lines.

System.Diagnostics.Debug.WriteLine("The");
System.Diagnostics.Debug.WriteLine("BrainPad");
System.Diagnostics.Debug.WriteLine("is");
System.Diagnostics.Debug.WriteLine("amazing!");

Put the cursor on the first line and hit F9 function key. This will add a breakpoint. You can do the same from under

the Debug menu.

Start the program just like before. As soon as execution hits the breakpoint, it will pause at that line.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 46 OF 69 AUGUST 2, 2018

It will stop right before that line is executed. Press the F10 key or click the step over button

This will make the program execute one line of code, or one step. Since the line we are on prints “The” in the

output window, you will see it there. Step further in the code (F10) while observing the output window. This is

called stepping through code and is extremely useful when trying to debug your programs to figure out why

something is not working as expected.

NON-ENDING PROGRAMS

It makes sense for a program to close or end on a PC or a phone. However, on smaller devices, called embedded

devices, programs do not usually end. Think of a microwave oven for example. The microwave has a small “brain”

inside that is always monitoring the keys for presses and running the clock on the screen. Unless you unplug the

microwave, this program is always running. This is known as an infinite loop and is used often in computer

programming.

Let's create a counter on the BrainPad that runs "forever." Basically, the BrainPad will count once every second

and never stop. Below is what the code should look like.

Note that you need to stop any running program before modifying it. You can do so by pressing the stop button.

namespace HelloWorld {
 class Program {
 static void Main()
 {
 var count = 0;

 while (true)
 {
 System.Diagnostics.Debug.WriteLine("Counting: " + count);
 Thread.Sleep(1000); // Wait one second

 count = count + 1;
 }
 }
 }
}

The output window will show the counter.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 47 OF 69 AUGUST 2, 2018

While the program is running, insert a breakpoint on the counter line. From there you can step through the code

like we did before. Now, hover the mouse over our variable “count,” and Visual Studio will show you the current

value of the variable. When I stopped the program, it was at 6. By the way, inspecting variables is another very

useful feature for debugging programs.

BRAINPAD LIBRARIES

So far, we have used pure TinyCLR OS to run simple programs. The BrainPad ships with libraries to help in the use

of all the available inputs and outputs. Right-click on the project in the Solution Explorer window and then select

Manage NuGet Packages…

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 48 OF 69 AUGUST 2, 2018

NuGet is an online service for hosting libraries. You can also download the libraries and host them locally. Select

where you want the libraries to come from. For example, I have the libraries hosted locally in a directory named

TinyCLR.

Under Browse, enter "brainpad" in the search bar.

This will reveal the GHIElectronics.TinyCLR.BrainPad library. Select it and click install

This step will add the needed libraries under references in the solution explorer.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 49 OF 69 AUGUST 2, 2018

To ease adding libraries to your code, a helper class is provided. Right click on the project the select Add > New

Item. . . You can also use the Ctrl+Shift+A shortcut.

From the available options, select BrainPad helper and click the Add button.

The fun begins now! Go back to Program.cs, where we added the counter code before. Change the code to show

the counter on the BrainPad display.

namespace HelloWorld
{
 class Program
 {

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 50 OF 69 AUGUST 2, 2018

 static void Main()
 {
 var count = 0;

 while (true)
 {
 BrainPad.Display.DrawSmallText(0, 0, "Count: " + count);
 BrainPad.Display.RefreshScreen();
 BrainPad.Wait.Seconds(1);

 count = count + 1;
 }
 }
 }

}

The line that prints the counter is similar to the Debug.WriteLine command we used before, except this time it is

printing to the BrainPad display. The second line is needed to refresh the screen. Displays are much slower than

processors. If we were to refresh the display every time we draw, the display would run very slowly. Instead, the

processor draws to its memory. Only when RefreshScreen is called is the display refreshed/updated. Think of a

video game where you need to draw a ship, obstacles, enemies…etc. You will do all this drawing to memory only,

which is fast, and only refresh the display as necessary.

The last line is to ask the BrainPad to wait one second.

BOUNCY BALL

The BrainPad libraries make everything look more “English” than code. Add some logic and you can create amazing

programs. Teaching C#/Visual Basic is not covered in this book but that doesn’t mean we can’t have a bit of fun!

Let's go back to the original program and draw a 5-pixel diameter circle. We will draw it at location 30,30. Displays

on computer systems start at the top left corner, which is location 0,0. Moving things to the right is done by

increasing x, the first number. 30,0 describes a point 30 pixels from the left edge of the screen at the very top of

the screen.

namespace HelloWorld
{
 class Program
 {
 static void Main()
 {
 var x = 30;

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 51 OF 69 AUGUST 2, 2018

 var y = 30;

 while (true)
 {
 BrainPad.Display.DrawCircle(x, y, 5);
 BrainPad.Display.RefreshScreen();
 BrainPad.Wait.Seconds(1);
 }
 }
 }
}

And we have a circle!

In our endless loop, we will increase the x and y variables in every loop. Since we started at 30, the variable will go

31, 32, 33, 34…etc. Are things getting more exciting for you?

The circle moved very slowly because of the one second delay. We will change that to 0.01. We will also add some

logic to bounce the circle/ball back. To bounce back, we need to have new variables, dx and dy. Those are basically

holding the direction the ball is going. We then check if the ball is at an edge. If so, we reverse direction.

namespace HelloWorld
{
 class Program
 {
 static void Main()
 {
 var x = 30;
 var y = 30;
 var dx = 1;
 var dy = 1;

 while (true)
 {
 x = x + dx;
 y = y + dy;

 if (x < 0 || x > BrainPad.Display.Width)
 {
 dx = dx * -1;
 }

 if (y < 0 || y > BrainPad.Display.Height)
 {

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 52 OF 69 AUGUST 2, 2018

 dy = dy * -1;
 }

 BrainPad.Display.DrawCircle(x, y, 5);
 BrainPad.Display.RefreshScreen();
 BrainPad.Wait.Seconds(0.01);
 }
 }
 }
}

The circle being redrawn as it moves across screen:

But we want to have a bouncing ball so let us clear the screen before we draw a circle. Add this line right before

DrawCircle.

BrainPad.Display.Clear();

Do you want to speed it up some more? The delay we have of 0.01 is very small so the delay is not the problem

here. We are only moving the circle one pixel in every loop. Move it 5 instead and it will be 5 times faster. This is

accomplished by changing the dx and dy initial value to 5.

var dx = 5;

var dy = 5;

What ball bounces without making noise? Have the BrainPad beep every time the ball bounces. Add this line inside

each if statement.

BrainPad.Buzzer.Beep();

Aha! Now this is a bouncing ball! But this is too loud, especially if you are in a classroom with 30 BrainPads! Add a

check to only make sounds if the down button is pressed.

if (BrainPad.Buttons.IsDownPressed())

{

 BrainPad.Buzzer.Beep();

}

Can you give the ball a cool effect by making get larger and smaller while moving? Think of how we change the ball

position within set boundaries. You will do the exact same thing. You need a variable r for radius and a variable dr

for direction of radius, growing or shrinking.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 53 OF 69 AUGUST 2, 2018

var r = 3;

var dr = 1;

We will then increase the size with boundaries between 1 and 8.

r = r + dr;

if (r < 1 || r > 8)
{
 dr = dr * -1;

}

Of course, we need to change the DrawCircle line to use the variable r instead of 5.

BrainPad.Display.DrawCircle(x, y, r);

Here is the complete code. But before you copy and paste the code, if you have named your project something

other than HelloWorld (no space in between words, case sensitive) then you will have a different default name

space. You should keep the default name space of your code and not copy the one from below. For example, if

your code shows

namespace SomethingElse

Then keep the namespace line but copy the rest of the code, everything starting from class Program and

ending with the second to last right brace(}). The last brace is actually part of the

namespace.

namespace HelloWorld
{
 class Program
 {
 static void Main()
 {
 var x = 30;
 var y = 30;
 var dx = 5;
 var dy = 5;
 var r = 3;
 var dr = 1;

 while (true)
 {
 x = x + dx;
 y = y + dy;

 if (x < 0 || x > BrainPad.Display.Width)
 {
 if (BrainPad.Buttons.IsDownPressed())
 {
 BrainPad.Buzzer.Beep();
 }

 dx = dx * -1;
 }

 if (y < 0 || y > BrainPad.Display.Height)

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 54 OF 69 AUGUST 2, 2018

 {
 if (BrainPad.Buttons.IsDownPressed())
 {
 BrainPad.Buzzer.Beep();
 }

 dy = dy * -1;
 }

 r = r + dr;

 if (r < 1 || r > 8)
 {
 dr = dr * -1;
 }

 BrainPad.Display.Clear();
 BrainPad.Display.DrawCircle(x, y, r);
 BrainPad.Display.RefreshScreen();
 BrainPad.Wait.Seconds(0.01);
 }
 }
 }
}

A CHRISTMAS LIGHT

You read that title correctly. We will be creating a Christmas light, as in a single light bulb. For this we will utilize

one of the thousands of built in functions found in TinyCLR OS. This function gives us a random number. Unlike real

life, in a computer nothing is truly random. This can make it difficult to generate a random number. Luckily, there is

a built in random number function that makes it easy. We just create a random object and then ask it for the next

random value.

We will use those random numbers to set the Light Bulb primary colors of red, green, and blue. In case you didn’t

know, those three colors can create any color you want.

static void Main()
{
 var rnd = new Random();

 while (true)
 {
 BrainPad.LightBulb.TurnColor(rnd.Next(100), rnd.Next(100), rnd.Next(100));
 BrainPad.Wait.Seconds(0.1);
 }

}

SEEING THE LIGHT

We want to set a plant somewhere indoors, and we are curious about how much light that corner gets. We want

to see summary of the light level throughout the day in the form of a chart.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 55 OF 69 AUGUST 2, 2018

The chart is very simple. We will basically draw a vertical line that starts where the level is and ends at the very

bottom of the display. The line will shift one pixel to the right in every loop.

static void Main()
{
 var x = 300;

 while (true)
 {
 x++;

 if (x > BrainPad.Display.Width)
 {
 x = 0;

 BrainPad.Display.Clear();
 BrainPad.Display.DrawSmallText(30, 0, "Light Level");
 }

 var light = BrainPad.LightSensor.ReadLightLevel() / 2;
 var y = BrainPad.Display.Height – light;

 BrainPad.Display.DrawLine(x, y, x, BrainPad.Display.Height);
 BrainPad.Display.RefreshScreen();
 BrainPad.Wait.Seconds(0.1);
 }

}

You probably want the program to pause when it reaches the far right, but in this example we will clear the display

and start from the beginning. Let’s run the loop quickly so we can see immediate results. If you want to graph two

hours, and the display is 128 pixels wide, you will need a one-minute delay in every step. This will record 128

minutes across the width of the display.

You can also keep the program as is and cover the light sensor with your hand to make some cool drawings!

Since we are expert coders by now, can you guess the answers to these questions?

1. Can you guess why we are dividing the light level by 2?

2. Can you guess why we set the start line to BrainPad.Display.Height - light?

3. Can you guess why x is initialized with 300? What happens if used 0 instead?

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 56 OF 69 AUGUST 2, 2018

Here are the answers but promise me you will try on your own first. The light level is anywhere 0 to 100. The

display is 64 pixels high. If we divide the level in half, the max value will be 100 / 2, or 50. With a 64 pixel high

display, we will have 14 pixels available at the top of the screen. This is where we print “Light Level.”

The second answer relates to how we want to show increasing light levels. Smaller y-coordinates are shown near

the top of the display, but we want lower light levels to appear near the bottom of the display. By subtracting the

light level from the height of the display, we are inverting the graph.

The last one is a cool trick to help when the code is first run. We only print Light Level when we clear the screen.

So, by setting x to a large value, we will automatically be outside the boundary we had set and “Light Level” will get

printed on the screen. Try changing it to 0 and light level will not show on the screen the first time the graph is

plotted. It will only show when the display gets refreshed after drawing the first chart. You could just print it in

every loop, but this will slow down your program. We should always think smart when we code and only do what

is necessary.

MULTITASKING

Asking a system to do multiple things at once is very complex internally. Typically, it's not user-friendly on small

systems. The good news is that TinyCLR OS allows for multitasking and it's easy to use. It works exactly how it

would on any larger system programmed in .NET. Multitasking is called threading, where each thread is an

individual task running part of the program.

Not sure why you would need threading? How would you count on the Display while blinking the Light Bulb? Sure,

if you want to increment the count with every light blink then it is easy.

static void Main()
{
 var count = 0;

 while (true)
 {
 BrainPad.LightBulb.TurnGreen();
 BrainPad.Wait.Seconds(0.1);
 BrainPad.LightBulb.TurnOff();
 BrainPad.Wait.Seconds(0.9);

 BrainPad.Display.DrawSmallText(0, 0, "Count: " + count);
 BrainPad.Display.RefreshScreen();

 count = count + 1;
 }

}

Now, change the program to keep blinking once a second but count as fast as possible. You really can’t without

threading. Start by moving the blinking code into its own method. A method is a piece of code that does a specific

task. You call that method to handle that task. For example, the LightBulb has a method called TurnGreen to make

it green.

static void Blink()
{
 while (true)
 {

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 57 OF 69 AUGUST 2, 2018

 BrainPad.LightBulb.TurnGreen();
 BrainPad.Wait.Seconds(0.1);
 BrainPad.LightBulb.TurnOff();
 BrainPad.Wait.Seconds(0.9);
 }

}

If you call that method, it will blink the light once a second; however, it will never return due to its while-loop.

That's okay because we will call that method from a separate thread. Are you ready for the complex code to create

a thread? Here it is!

new Thread(Blink).Start();

We simply told the system to create a new thread for the method Blink and then start that thread.

STOP! Before running the code, we need one last change. Every thread in the system must have a sleep in it. This

helps the system in processing its internal tasks and lets the other threads run smoothly. But you may say that we

only have one thread. We really have two threads. The system automatically creates a thread internally that runs

Main(), which is the main method to run. If you need to run as fast as possible, just add the minimum required

delay.

BrainPad.Wait.Minimum();

Here are both methods, Main and Blinking.

static void Blink()
{
 while (true)
 {
 BrainPad.LightBulb.TurnGreen();
 BrainPad.Wait.Seconds(0.1);
 BrainPad.LightBulb.TurnOff();
 BrainPad.Wait.Seconds(0.9);
 }
}

static void Main()
{
 new Thread(Blink).Start();

 var count = 0;

 while (true)
 {
 BrainPad.Display.DrawSmallText(0, 0, "Count: " + count);
 BrainPad.Display.RefreshScreen();
 BrainPad.Wait.Minimum();

 count = count + 1;
 }

}

There are two endless loops and they are both running simultaneously. While this is a very simple example, it

shows the possibilities. As an exercise, add another thread to beep every three seconds.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 58 OF 69 AUGUST 2, 2018

CALL ME

We have used the buttons already, so you know how they work. However, we have always used them in a loop

where we checked if the button was pressed. The system may check if the button is pressed millions of times

before it is finally pressed. This is very bad for battery operated devices. A good design will go to sleep when it is

not handling any tasks to conserve on battery usage. If your phone didn’t sleep, it wouldn’t last an hour before it

needed to be charged again.

This subject can get quite intense, so we will only cover button events. Instead of constantly checking the buttons,

we will ask the system to call us when a button is pressed. We want to make a beep sound every time the up

button is pressed. We will blink the Light Bulb as well.

static void Main()
{
 while (true)
 {
 BrainPad.LightBulb.TurnGreen();
 BrainPad.Wait.Seconds(0.1);
 BrainPad.LightBulb.TurnOff();
 BrainPad.Wait.Seconds(0.9);

 if (BrainPad.Buttons.IsUpPressed())
 {
 BrainPad.Buzzer.Beep();
 }
 }

}

Press the up button and nothing will happen. Hold it down and it will beep once a second. This is expected as the

loop has delays and the button is checked once a second. You can decrease the delay, but this will still not solve

the problem. Instead, we will now use events. Visual Studio can automatically generate the code needed. Start by

typing “BrainPad.Buttons.WhenUpButtonPressed” and then add “+=” after. You can now hit the tab key to

generate the event method.

The generated event method looks like this:

private static void Buttons_WhenUpButtonPressed()
{
 throw new NotImplementedException();

}

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 59 OF 69 AUGUST 2, 2018

The generated code has a line to generate an error (exception). This is only there so we would not forget about it.

Replace that line with a beep.

private static void Buttons_WhenUpButtonPressed()
{
 BrainPad.Buzzer.Beep();

}

Do not forget to remove the code that checks the button in the main loop.

static void Main()
{
 BrainPad.Buttons.WhenUpButtonPressed += Buttons_WhenUpButtonPressed;

 while (true)
 {
 BrainPad.LightBulb.TurnGreen();
 BrainPad.Wait.Seconds(0.1);
 BrainPad.LightBulb.TurnOff();
 BrainPad.Wait.Seconds(0.9);
 }
}

private static void Buttons_WhenUpButtonPressed()
{
 BrainPad.Buzzer.Beep();

}

By the way, multiple events can call the same event handler. Here is code that beeps when any one of the four

buttons is pressed.

static void Main()
{
 BrainPad.Buttons.WhenUpButtonPressed += Beeper;
 BrainPad.Buttons.WhenDownButtonPressed += Beeper;
 BrainPad.Buttons.WhenLeftButtonPressed += Beeper;
 BrainPad.Buttons.WhenRightButtonPressed += Beeper;

 while (true)
 {
 BrainPad.LightBulb.TurnGreen();
 BrainPad.Wait.Seconds(0.1);
 BrainPad.LightBulb.TurnOff();
 BrainPad.Wait.Seconds(0.9);
 }
}

private static void Beeper()
{
 BrainPad.Buzzer.Beep();

}

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 60 OF 69 AUGUST 2, 2018

SCARY WIRES

It is normal for anyone new to electronics to be intimidated and scared by the idea of wiring things. What if I get

electrocuted? What if damage the circuit?

The BrainPad makes this less scary. First, the BrainPad runs off a very low voltage of 5 volts (5V). You can’t get hurt

by touching 5V. Also, the BrainPad has built in protection and is designed to make it very difficult to damage it by

wiring something incorrectly. Still, you should understand what you are doing. There are many courses and online

articles that will guide you through understanding circuits.

As mentioned in the first chapter of this book, there are multiple ways to expand the BrainPad, thanks to the

female headers located near the USB connector.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 61 OF 69 AUGUST 2, 2018

Those pins have many functions and we would need several books to explain completely. We will scratch the

surface here by connecting a simple LED (Light Emitting Diode.)

LEDs are very inexpensive and come in different colors. They have two leads where one should be longer than the

other. Some LEDs have more than one color (like the BrainPad’s Light Bulb.) We are not covering those LEDs. To

control an LED a current-limiting resistor is needed. Some common values are 220, 330, or 470 ohms. You will also

need some wires and a breadboard.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 62 OF 69 AUGUST 2, 2018

We can use one of the GPIO pins on the expansion header to control the LED. GPIO means General Purpose Input

Output. We will use pin labeled PWM.

Bread-boards have internal connections where every row of holes is electrically connected. In the image below,

the breadboard on the right side has black lines showing the internal electrical connections. Anything plugged into

the holes connected by a black line will be electrically connected.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 63 OF 69 AUGUST 2, 2018

A wire will go from the PWM pin to the breadboard where the long lead from the LED is plugged in. The short lead

from the LED will connect to the resistor, and the resistor to the GND (ground) pin. This forms a circle (or circuit)

where electrons will have a path between PWM and GND. When the PWM pin is activated, the LED will light up.

To control the PWM pin, which is a GPIO, we will need to include the GHIElectronics.TinyCLR.Devices and

GHIElectronics.TinyCLR.Pins NuGet libraries. These libraries are needed by the GHIElectronics.TinyCLR.BrainPad

library we always add, so no further action is needed as they are automatically added.

We will need to have access to the GPIO libraries in our code. This is done with one line of code.

using GHIElectronics.TinyCLR.Devices.Gpio;

We need to access a pin through the GPIO controller that is found inside the processor.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 64 OF 69 AUGUST 2, 2018

var controller = GpioController.GetDefault();

var pwmPin = controller.OpenPin(BrainPad.Expansion.GpioPin.Pwm);

Pins can be inputs or outputs, just like the inputs and outputs on the BrainPad. Inputs go into the “brain” and

outputs come out of the “brain”. An input example is a button, like the buttons found on the BrainPad. An output

example is an LED, like the Light Bulb. So the PWM pin must be an output.

pwmPin.SetDriveMode(GpioPinDriveMode.Output);

We can now simple “write” to this pin, to make it High (activate) or Low (deactivate). Put that in a loop with some

delays and you have a blinking LED.

while (true)
{
 pwmPin.Write(GpioPinValue.High);
 BrainPad.Wait.Seconds(0.1);
 pwmPin.Write(GpioPinValue.Low);
 BrainPad.Wait.Seconds(0.5);

}

The complete main method code should look like this:

static void Main()
{
 var controller = GpioController.GetDefault();
 var pwmPin = controller.OpenPin(BrainPad.Expansion.GpioPin.Pwm);

 pwmPin.SetDriveMode(GpioPinDriveMode.Output);

 while (true)
 {
 pwmPin.Write(GpioPinValue.High);
 BrainPad.Wait.Seconds(0.1);
 pwmPin.Write(GpioPinValue.Low);
 BrainPad.Wait.Seconds(0.5);
 }

}

Connecting a button is similar, except the pin will need to be an input instead of output. Without getting into a lot

of details, the pin needs to be an input with pull up. This keeps the pin high until the button is pressed.

pwmPin.SetDriveMode(GpioPinDriveMode.InputPullUp);

No need to add any resistors to the button. Simply wire the button between one of the GPIOs and GND.

CONCLUSION

TinyCLR OS from GHI Electronics brings truly professional programming to the BrainPad. The knowledge you will

gain is beneficial in coding any device, from phones to computers. This option is made easy to use thanks to our

TinyCLR Operating System and Microsoft’s .NET Framework.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 65 OF 69 AUGUST 2, 2018

EXPANDABILITY

The expansion headers open a whole world of possibilities. Here we list some options to get you thinking about

what's possible.

MIKROELEKTRONIKA CLICK BOARDST M

MikroElektronika offers hundreds of small modules that plug right onto the BrainPad. Modules include simple

sensors like humidity and temperature to more sophisticated devices like voice recognition and electrocardiogram

modules. There are also many actuator and control modules for things like motor control and digital lighting

control. You can find them all on their website at https://www.mikroe.com/click.

In this sample project, we've made a linear clock that uses a Real Time Clock (RTC) click module to keep track of

time even when the BrainPad is not powered (https://docs.brainpad.com/projects/linear-clock.html).

https://www.mikroe.com/click
https://docs.brainpad.com/projects/linear-clock.html

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 66 OF 69 AUGUST 2, 2018

ELENCO® SNAP CIRCUITS®

One of the most popular electronics learning platforms is called Snap Circuits, made by Elenco

 (https://www.elenco.com). These very popular kits can be found at local and online retailers and include a variety

of electronic components and instructions for building many different projects.

With the BrainPad, you can add intelligence and programming to your electronics projects. This sample project is a

countdown timer that launches a propeller. Make sure you watch the video. It is one of our favorites

(https://docs.brainpad.com/projects/lift-off.html).

https://docs.brainpad.com/projects/lift-off.html

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 67 OF 69 AUGUST 2, 2018

BREADBOARDS

Want to design your own electronic circuits from scratch just like engineers do? There are many ways to create

circuits that work with the BrainPad. While designing circuits requires a little more knowledge, it is the most

creative and least expensive way to expand your BrainPad. It is also the most educational.

The easiest way to get started making your own circuits is to use solderless breadboards. Wire and components

simply plug into the holes in the breadboard. The breadboard holds the components and connects them together

electrically. Not only is this the fastest way to test a new circuit, but correcting mistakes is simple as well.

If you have a circuit that you would like to make more permanent, there are several options from easy to use pre-

made prototyping boards to designing your own circuit boards. Circuit board designs can be drawn by hand or

drawn using free computer-based design tools. This is what makes the BrainPad so special – it is simple to get

started, but you can advance as far as you like while learning at your own pace.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 68 OF 69 AUGUST 2, 2018

You can also add one or more of many available sensors to your BrainPad project. By searching the web for “sensor

kit,” you can find many inexpensive sensor assortments. Here is one example:

Some knowledge is necessary for using these modules, however we have some easy to build projects that will get

you moving in the right direction. Once you become familiar with one type of sensor, it becomes much easier to

understand how other sensors work.

BRAINPAD – BEGINNERS’ GUIDE WWW.BRAINPAD.COM

PAGE 69 OF 69 AUGUST 2, 2018

www.BrainPad.com

http://www.brainpad.com/

	Introduction
	The Author
	Global Thinking
	License
	The Concept
	STEM
	The Philosophy

	Two Paths
	Start Making
	Go Beyond
	Going Beyond the Beyond!

	Start Making
	Copying to the BrainPad
	JavaScript
	Display Fun
	Playing Musical Notes
	Using the Buttons
	Is it Dark in Here?
	Hearing Test
	Servo Motors
	Positional Servo Motors
	Continuous Servo Motors
	Christmas Lights
	Conclusion

	Go Beyond
	TinyCLR OSTM
	Visual Studio
	System Setup
	Hello World
	Non-ending Programs
	BrainPad Libraries
	Bouncy Ball
	A Christmas Light
	Seeing the Light
	Multitasking
	Call me
	Scary Wires
	Conclusion
	Expandability
	MikroElektronika Click BoardsTM
	Elenco® Snap Circuits®
	BreadBoards

