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About the Book

1. About the Book

1.1. Intended Audience

This book is for beginners wanting to get started on .NET Gadgeteer. No prior knowledge is 
necessary, but some basic programming knowledge is helpful. There is a great deal of 
information in this book for both hobbyists and engineers.

1.2. Disclaimer 

This is a free book. Use it for your own knowledge and at your own risk. GHI Electronics is not
responsible for any damage or loss caused by the use of this book or by any information 
provided. There is no guarantee any information in this book is valid.
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2. Introduction
*** Draft, in-progress document ***

.NET Gadgeteer is a rapid development platform that utilizes mainboards and plug-and-play 
modules to build electronic projects, without the need for an electronics background. Take a 
temperature logger application for example, this requires a mainboard, SD card module and 
temperature module. As for the software, all the necessary drivers are included, significantly 
reducing development time. The few lines of code needed for this example can be coded by 
anyone with minimal software experience.

These specifications are introduced and maintained by Microsoft and the community for 
standardizing the connections between mainboards and modules.

A .NET Gadgeteer module on the left, a .NET Gadgeteer mainboard on the right. A cable connects sockets 
between the module and the mainboard.

2.1. .NET Micro Framework

.NET Gadgeteer software works on top of the .NET Micro Framework (NETMF) software. 
NETMF includes thousands of methods, some are borrowed from the full .NET framework. 
Meaning .NET Desktop developers already know how to program NETMF and .NET 
Gadgeteer products. NETMF also extends the standard framework with numerous hardware-
related methods. This includes the ability to read and write to control pins allowing you to blink
some lights or to check if a button is pressed. GHI Electronics also extends the framework 
with some exclusive features, such as using databases and USB Host.
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2.2. Visual Studio

.NET Gadgeteer developers will be using Microsoft's Visual Studio, one of the most popular 
tools, by hobbyists and professionals. Even the free version of Visual Studio will work with 
.NET Gadgeteer.

One of the many benefits of using Visual Studio is its IntelliSense. As you type, IntelliSense 
understands what you might be trying to do and displays boxes with suggestions. That's why 
we ship .NET Gadgeteer products without any programming manuals. It's that FEZ! 

Learn about the history behind Fast and Easy (FEZ) here: 
www.ghielectronics.com/technologies/fez 

Let's say a Camera Module is being used. All you need to do is type the word "camera" and 
hit "period" on the keyboard to see a list of supported methods available in the included 
drivers.

The beauty of object-oriented programming at its finest.

Deploying programs to the device is done though a simple USB cable. What sets NETMF and
.NET Gadgeteer apart from other entry level electronic circuits is its ability to debug code. 
Developers can step in code, pause executions, check variables and add breakpoints.

We've barely scratched the surface of what .NET Gadgeteer with NETMF and Visual Studio 
can do. Lets put it all to the test and enjoy watching some blinking lights!
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3. Helpful Notes for Your Gadgets
As .NET Gadgeteer uses the latest professional tools on the market, a proper software 
installation is necessary. Beginners should stick to the exact software versions listed on the 
GHI Electronics' website or within this book.

To get started, install the exact software listed on GHI Electronics' support page: 
https://www.ghielectronics.com/support/gadgeteer 

The installation steps will include:
1. Microsoft Visual Studio (IDE and the compiler)
2. Microsoft NETMF Project System (plugin for Visual Studio to allow 

deploying/debugging)
3. Microsoft NETMF SDK (framework libraries)
4. Microsoft's .NET Gadgeteer (graphical designer and project templates)
5. GHI Electronics' SDK (drivers for mainboards and modules plus GHI Electronics' 

exclusive libraries)

This book's examples are made with modules available in the tinker kits from GHI Electronics;
however, any other .NET Gadgeteer hardware should work with minor changes.
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4. LED Blinking, the easy way
Now, let's develop and run a small application to make sure everything is setup properly. We'll
blink the LED that is found on every mainboard and print a debug string back to Visual 
Studio's output window.

Tip: Please note that there is a troubleshooting section at the end of this chapter.

4.1. Setting up

Run Visual Studio and start a new project. Click on “FILE>New Project...”. You will have the
option of using Visual Basic or C#. This book will focus on C# but there is a Visual Basic
chapter near the end.

IMPORTANT: Use HelloLED for the project name. This is very important! I will explain why 
later.

The next step is to select the proper mainboard. Make sure to also select the latest version 
of .NET Micro Framework if this option is available. Some mainboards may support multiple 
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versions of NETMF and we want to always use the latest if possible.
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Click the Create button and the .NET Gadgeteer Visual Designer's window will now appear 
with the mainboard selected.

Tip: Highlight or click on any mainboard/module in the design surface and hit F1. This will 
show a useful help page about that particular mainboard/module.

Click the Toolbox tab to show all the available modules and mainboards.
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We want to start by adding a power module to the design. This is also the module used for 
debugging/deploying over USB. The power modules are always red and you should only have
one power module added an any design. 

Find the module in your kit and locate its match in the designer. In my case, it is USB Client 
SP module. Add the module in the designer by dragging it in or by double-clicking.

We are now ready to connect the module to the mainboard. You can right-click anywhere in 
the designer area and click “connect all modules” or click on the socket on the module you 
want to connect and the mainboard will automatically highlight the correct sockets. If you 
noticed, the module's socket is labeled with D and on the mainboard the proper socket will 
also be labeled D.

Now go back to your actual boards and make the same connection.
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Connect the power module to your computer using a standard USB Cable. Observe the red 
light on the power module (red module).

4.2. Coding the Software

Now that you got this far, you deserve to have fun and enjoy .NET Gadgeteer. Remember to 
save your project if you haven't done so already.

Locate the Solution Explorer window. You will find two C# files in there. One is auto-generated
by the designer surface, where you added the modules. Do not modify this file. Now click 
Program.cs to view it. In the code, you will see a “ProgramStarted” method and inside of it 
there is a debug statement. Everything in green is considered a comment.

Now, how does Visual Studio know which board to access, in case you have multiple. It also 
needs to know how the board is connected (USB in our case). To set these settings, go to the 
project properties. 

By the way, my project is named HelloLED but yours can be anything else.

Click on the .NET Micro Framework tab and check the transport is set to USB and find your 
device under devices. If you do not see the device then it is not plugged in properly.
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Now we are ready to deploy our code to the device. Click the start button or simply hit F5.

This compiles the code and deploys it to the device to be ran. You will see a lot of activity on 
the output window, then the program will load and run. The debug print is generated by the 
mainboard but the message is sent back to Visual Studio over the USB cable to be shown in 
the output window.

By the Community for the Community Page 12 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/


GHI Electronics,LLC .NET Gadgeteer for Beginners

LED Blinking, the easy way

This is a good start but we don't have any blinking LEDs yet! Lets fix that. Start by stopping 
the program by clicking the button or Shift + F5.
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Go back to Program.cs and edit it with the following code to blink the no-board LED. By the 
way, LED stands for a light emitting diode.

using System;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;

namespace HelloLED
{
    public partial class Program
    {

        void ProgramStarted()
        {
            Debug.Print("Hello PC");
            while (true)
            {
                Mainboard.SetDebugLED(true);
                Thread.Sleep(1000); // leave it on for 1 second
                Mainboard.SetDebugLED(false);
                Thread.Sleep(500); // turn it of for 500 milliseconds
            }
        }
    }
}

Run the program again and the LED on the mainboard will be blinking. 

You can now enjoy the debugging features. While the LED is blinking, set the cursor over the 
first SetDebugLED line and hit F9 key. This should make that line red and will stop the 
program at that line.
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The LED should be off at this exact moment. The line to turn the LED on has not executed 
just yet. Now hit the F10 key for a single step and note the program and the LED.

4.3. Troubleshooting

Do not panic if the LED is not blinking by now. There are two common things that can go 
wrong. First, is the USB driver. Did you see the device's name when going to the project 
settings in Visual Studio? If not, check the device manager. The driver should install manually 
when it's installing the GHI Electronics' SDK. Check the installation steps on the support 
page. You can also point windows directly to the driver, located in the GHI Electronics folder 
under program files, or where you selected to install the GHI SDK.

Second, is when the device is not loaded with the latest software. When this is the problem, 
you should see a message on the output windows indicating firmware mismatch. The device 
(the mainboard) has a resident software, called firmware that always lives on it. This is not the
application you develop and load onto the device. The firmware is developed and provided by
the mainboard manufacture. Consult with the mainboard manuals on how to update the 
firmware. 

Tip: GHI Electronics provides a utility software called FEZ Config to help with many tasks, 
including firmware updates.

Finally, the software running the mainboard may have very tight loops making it difficult for 
Visual Studio to latch to the device. Pressing the reset button at the same time as deploying 
from Visual Studio helps. In extreme cases, the device need to be set in TinyBotter mode to 
erase the application. This should not be needed if the system is properly programmed by 
using events without using long tight loops and no sleep.
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5. LED Blinking, the right way
In the previous chapter, we used a simple infinite loop to blink the LED. Using infinite loops is 
an old practice that shouldn't be used with a modern system like .NET Gadgeteer. The correct
alternative is to start a timer and then toggle the LED every time the timer ticks.

using System;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;

namespace HelloLED
{
    public partial class Program
    {
        // This method is run when the mainboard is powered up or reset.   
        void ProgramStarted()
        {
            GT.Timer timer = new GT.Timer(300); // Create a timer
            timer.Tick += timer_Tick; // Run the method timer_tick when the timer ticks

            timer.Start(); // Start the timer
        }

        bool state = false;
        void timer_Tick(GT.Timer timer)
        {
            state = !state; // Invert the state (to blink the LED)
            Mainboard.SetDebugLED(state); // Set the LED to state
        }
    }
}

This method may seem overly complex for blinking an LED (which is true), but complete 
applications do a lot more than blinking an LED. I will give you a good example. How would 
you blink the LED once every 765 milliseconds and debug print the word 'hello” once every 
567 milliseconds? Try to accomplish this with a single loop. It will be extremely difficult. Now, 
try it using individual timers.

Another concern solved by using timers is that the ProgramStarted method needs to complete
and return. Adding an infinite loop inside of it will prevent it from returning, causing the .NET 
Gadgeteer core to not work properly. 
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6. LED Blinking, using a module
We are about to plug in the first module and use it, congratulations. This chapter will be using 
the LED Strip module. The first thing to do would be to go back to the designer surface and 
add the LED Strip module, or any other LED module you may have.

The instant name of the LED Strip module is shown right under the module. In this case it is 
ledStrip. Go back to the code and type the module name to inspect what methods are 
available through this module.
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Going through the list, you should see the SetLed method. It should be very easy to modify 
the code we had earlier to blink one of the LEDs on the module instead of the mainboard's 
LED.

using System;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace HelloLED
{
    public partial class Program
    {
        // This method is run when the mainboard is powered up or reset.   
        void ProgramStarted()
        {
            
            GT.Timer timer = new GT.Timer(300); // Create a timer
            timer.Tick += timer_Tick; // Run the method timer_tick when the timer ticks

            timer.Start(); // Start the timer
        }

        bool state = false;
        void timer_Tick(GT.Timer timer)
        {
            state = !state; // Invert the state (to blink the LED)
            ledStrip.SetLed(1, state); // Set the LED to state
        }
    }
}

Now, lets experiment with other available methods, like TurnAllLedsOff and TurnAllLedsOn. 
Can you get these methods to blink all LEDs together?
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using System;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace HelloLED
{
    public partial class Program
    {
        // This method is run when the mainboard is powered up or reset.   
        void ProgramStarted()
        {
            
            GT.Timer timer = new GT.Timer(300); // Create a timer
            timer.Tick += timer_Tick; // Run the method timer_tick when the timer ticks

            timer.Start(); // Start the timer
        }

        bool state = false;
        void timer_Tick(GT.Timer timer)
        {
            state = !state; // Invert the state (to blink the LED)
            if (state)
                ledStrip.TurnAllLedsOn();
            else
                ledStrip.TurnAllLedsOff();
        }
    }
}
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7. Namespace
Namespaces are a way to organize and control code in large projects. It groups code sections
under a name space. When that space needs to be used, the “using” statement is utilized. All 
examples provided earlier show multiple using statements at the beginning of the code. Do 
not worry if you do not completely understand this, just remember to add the using statements
as shows in the example code for now.

What is important to understand now is the namespace of your actual program. When you 
create a project called MyProject, Visual Studio will automatically set the namespace to 
MyProject. If you manually modify the namespace of your code to something else then 
your .NET Gadgeteer project will no longer compile. This will most likely happen when you 
copy code from this book or the internet.

Tip: This is why in an earlier chapter it was important for you to name the project HelloLED. 
Try to go back to the last example and change the namespace to something else, like 
HelloLEDs. The error will look something like this image:

Always make sure to correct the namespace when copying examples from this book. 
For the sake of simplicity, all following examples will be built with a project named 
GadgeteerBook.

By the Community for the Community Page 20 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/


GHI Electronics,LLC .NET Gadgeteer for Beginners

Reading a Digital Input

8. Reading a Digital Input
Lets connect a button and use it to control the LED found on the mainboard. Start a new 
project and name it GadgeteerBook, as explained in the namespace chapter. Note that 
everything is case sensitive when it comes to programming in C#, Gadgteerbook will not 
work.

Here's our design of the hardware, set yours up the same way:

Remember that you can hit F1 while highlighting one of the modules for the available 
methods. Lets do that for the button.
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In previous examples, we used the modules with their default name. In this example, we will 
change the button name from button to controller. Click on the name right under the module 
and change as showing below.

Lets start with one of the earlier examples that we used to blink the on-board LED on the 
mainboard and slightly modify it to only blink if the LED is pressed.

using System;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
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using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
    public partial class Program
    {
        // This method is run when the mainboard is powered up or reset.   
        void ProgramStarted()
        {

            GT.Timer timer = new GT.Timer(300); // Create a timer
            timer.Tick += timer_Tick; // Run the method timer_tick when the timer ticks

            timer.Start(); // Start the timer
        }

        bool state = false;
        void timer_Tick(GT.Timer timer)
        {
            state = !state; // Invert the state (to blink the LED)
            if (controller.Pressed) // If button is pressed
            {
                Mainboard.SetDebugLED(state);
            }
        }
    }
}
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While the code is correct, it does not take advantage of the button events. We can use less 
system resources and code by properly using events. If a button pressed event fired, we will 
start the blink timer. If the button was released, we will stop the timer.

using System;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
    public partial class Program
    {
        private GT.Timer timer = new GT.Timer(300); // Create a timer
        void ProgramStarted()
        {

            timer.Tick += timer_Tick; // Run the method timer_tick when the timer ticks
            controller.ButtonPressed += controller_ButtonPressed; // Button down event
            controller.ButtonReleased += controller_ButtonReleased; // Button up event
        }

        void controller_ButtonReleased(Button sender, Button.ButtonState state)
        {
            timer.Stop(); // Stop the timer
        }

        void controller_ButtonPressed(Button sender, Button.ButtonState state)
        {
            timer.Start(); // Start the timer
        }

        bool state = false;
        void timer_Tick(GT.Timer timer)
        {
            state = !state; // Invert the state (to blink the LED)
            Mainboard.SetDebugLED(state);
        }
    }
}

Can you use the button to control the LEDs on a module? What about the button controlling 
the speed of blinking?

Hint: Change the timer speed (interval).
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5. Traffic Light!
In this chapter, we will bring it all together, a button with LEDs and even add some sounds 
from the tunes module. Lets call this example a traffic light. When the button is pressed, the 
light will automatically become red to stop the vehicles while the tunes module makes a 
sound to allow pedestrians to cross safely!

The code properly uses two timers and never blocks the system with an infinite loop. Try to 
analyze and modify the program.
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using System;
using System.Collections;
using System.Threading;
using Microsoft.SPOT;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
    public partial class Program
    {
        private enum LightState : uint
        {
            GREEN = 1 + 2,  // 00 000 11
            YELLOW = 4 + 8 + 16, // 00 111 00
            RED = 32 + 64 // 11 000 00
        }
        int SecondsCounter = 0;
        int WalkingCounter = 0;
        GT.Timer CarTimer = new GT.Timer(1000);
        GT.Timer PedTimer = new GT.Timer(1000);
            
        void ProgramStarted()
        {
            CarTimer.Tick += CarTimer_Tick;
            PedTimer.Tick += PedTimer_Tick;
            button.ButtonPressed += ButtonPressed;
            CarTimer.Start();    
        }

        public void ButtonPressed(Button sender, Button.ButtonState state)
        {
            // Stop the light at RED for cars
            CarTimer.Stop();
            ledStrip.SetBitmask((uint)LightState.RED);
            SecondsCounter = 0;
            // Allow pedestrians to walk for 5 seconds
            WalkingCounter = 5;
            PedTimer.Start();
        }

        void PedTimer_Tick(GT.Timer timer)
        {
            if (WalkingCounter-- < 0)
            {
                // Lsst round
                PedTimer.Stop();
                CarTimer.Start();
                // Make a onger sound
                tunes.Play(4000, 300);
            
            }else
                tunes.Play(4000, 50); // Make short sounds
        }

        private void CarTimer_Tick(GT.Timer timer)
        {
            if (SecondsCounter < 4) // start with Red
           {
               ledStrip.SetBitmask((uint)LightState.RED);
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            }
            else if (SecondsCounter < 7) // Red-> Green
            {
                ledStrip.SetBitmask((uint)LightState.GREEN);
            }
            else if (SecondsCounter < 8) // Green-> Yellow
            {
                ledStrip.SetBitmask((uint)LightState.YELLOW);
            }
            else // back to the beginning
            {
                SecondsCounter = 0;
            }
            SecondsCounter++; // Increment the seconds counter
        }
    }
}

Tip: If you are not interested in stepping through the code (debugging), it maybe faster to just 
load the program without debugging. This is accomplished by pressing Shift + F5.
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9. Drawing Simple Shapes
One of the great features of .NET Gadgeteer is in its graphics support. This graphical drawing
feature is inherited from the core of .NET Micro Framework, which supports drawing simple 
shapes and also supports BMP, JPG and GIF images. Not only that, full font support is also 
part of the package. More on fonts in the next chapter.

We will also be using Threads instead of Timers in this example. Note how the thread has an 
infinite loop but it also has a sleep that allows the rest of the system to run properly.

using System;
using System.Threading;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
    public partial class Program
    {
        void ProgramStarted()
        {
            displayN18.SimpleGraphics.DisplayRectangle(
                GT.Color.Magenta, 2, GT.Color.Black, 1, 1, 100, 100);
            Thread Bouncer = new Thread(BouncerLoop);
            Bouncer.Start();
        }
        int x = 50, y = 50; // position
        int dx = 4, dy = 6; // speed and direction
        void BouncerLoop()
        {
            while (true)// Infinite loop
            {
                x += dx;
                y += dy;
                displayN18.SimpleGraphics.DisplayEllipse(
                    GT.Color.Green, 1, GT.Color.Black, x, y, 8, 8);
                // Bounce back!
                if (x < 15 || x > 85)
                    dx *= -1;
                if (y < 15 || y > 85)
                    dy *= -1;
                Thread.Sleep(30);// Sleep for few milliseconds
            }
        }
    }
}
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Tip: If Visual Studio failed to deploy an application after loading this program, simply click the 
reset button on the mainboard as soon as you click run on visual studio. This is especially the 
case with displays that use the SPI bus, like the Display N18 module.

9.1. Glide

For more advanced graphical application with beautiful user interfaces, GHI Electronics offer 
a free and open source library, called Glide. Each screen, called a window, is constructed and
rendered from a simple XML text. It supports many components, like buttons and lists.

The website also hosts a window designer for glide. Drag and drop what you need and the 
website will generate the XML text.

Learn more at https://www.ghielectronics.com/glide 
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10. Drawing Images
As mentioned earlier, the core .NET Micro Framework supports BMP, JPEG and GIF image 
formats. This support is optional to the device manufacturers. Smaller devices with little 
resources may or may not support one or more of the image formats. Check the device 
manual to determine what image formats are supported on your device. 

It is also important to note that images require a lot of memory. A simple 100x100 pixel image 
will need about 40,000 bytes. This is not a problem for devices with a large amount of 
memory but some .NET Gadgeteer devices have a very limited memory. These limited 
devices will typically run everything fine but will struggle with graphics.

To keep the demo universal, we will use a tiny image that is 8x8 pixels in this demo. You can 
use a larger image if your device has plenty of memory.

The next step is to add this bitmap as a resource in our program. It can also be loaded from 
the SD card but we will cover memory cards later.

Find Resources.resx in the Solution Explorer and double-click it. Now drag the image into the 
resource.
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Lets make this cute monster run on the screen!

using System;
using System.Threading;
using Microsoft.SPOT;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
    public partial class Program
    {
        void ProgramStarted()
        {
            // Draw a border
            displayN18.SimpleGraphics.DisplayRectangle(
                GT.Color.Magenta, 2, GT.Color.Black, 1, 1, 100, 100);
            Thread Bouncer = new Thread(BouncerLoop);    
            Bouncer.Start();
        }
        int x = 50, y = 50; // position
        int dx = 4, dy = 6; // speed and direction
        void BouncerLoop()
        {
            // Get the bitmap resource
            Bitmap monster = new Bitmap(Resources.GetBytes(
                Resources.BinaryResources.TinyImg), Bitmap.BitmapImageType.Bmp);
            displayN18.SimpleGraphics.AutoRedraw = false;  // Do not redraw
            while (true)
            {
                // Erase the old monster
                displayN18.SimpleGraphics.DisplayRectangle(
                    GT.Color.Black,0,GT.Color.Black,x,y,8,8);
                x += dx; y += dy;
                displayN18.SimpleGraphics.DisplayImage(monster, x, y);
                // Draw to the screen
                displayN18.SimpleGraphics.Redraw();
                // Bounce back!
                if (x < 15 || x > 85)
                    dx *= -1;
                if (y < 15 || y > 85)
                    dy *= -1;
                Thread.Sleep(30);
            }
        }
    }
}
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11. Drawing Fonts
One of the great features of .NET Micro Framework is in the font support. You can take 
almost any font of any size and convert it to a TinyFont and use it on any .NET Micro 
Framework device with graphics support. This book will not explain how to convert fonts but 
the default .NET Gadgeteer project will always include two fonts. Go back to the resource 
viewer, by clicking on Resources.resx. From the drop down menu select Files. This should 
show the two included fonts, NinaB and small.

To write to the screen, we would need to construct a Font object and then use that to draw on 
the screen.

The example code is nearly identical to the one before, except it bounces the text “HI” inside 
the box.
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using System;
using System.Threading;
using Microsoft.SPOT;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
    public partial class Program
    {
        void ProgramStarted()
        {
            // Draw a border
            displayN18.SimpleGraphics.DisplayRectangle(
                GT.Color.Magenta, 2, GT.Color.Black, 1, 1, 100, 100);
            Thread Bouncer = new Thread(BouncerLoop);    
            Bouncer.Start();
        }
        int x = 50, y = 50; // position
        int dx = 4, dy = 6; // speed and direction
        void BouncerLoop()
        {
            // Get the bitmap resource
            Font MyFont = Resources.GetFont(Resources.FontResources.NinaB);
            displayN18.SimpleGraphics.AutoRedraw = false;  // Do not redraw
            while (true)
            {
                // Erase the old text
                displayN18.SimpleGraphics.DisplayRectangle(
                    GT.Color.Black, 0, GT.Color.Black, x, y, 14, 14);
                x += dx; y += dy;
                displayN18.SimpleGraphics.DisplayText("HI", MyFont, GT.Color.Yellow, x, y);
                // Draw to the screen
                displayN18.SimpleGraphics.Redraw();
                // Bounce back!
                if (x < 15 || x > 85)
                    dx *= -1;
                if (y < 15 || y > 85)
                    dy *= -1;
                Thread.Sleep(30);
            }
        }
    }
}
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12. Reading an Analog Input
Digital inputs provide a logical state, either on or off. In code, the digital state is true and false 
as learned before. On the other hand, analog inputs read the voltage level on a pin. This can 
be a light sensor or a joystick. In this demo,  we will show a simple graph on the screen 
representing both, a light sensor and movement from an analog joystick. The code can be 
modified to work with any other analog input.

If you are new to C#, this code has something new to learn. The value returned from the 
sensors is a number that can carry a fraction called float or double. Double has more 
accuracy than float. For example the value coming from the joystick can be anywhere from 
-1.0 to 1.0, a possible output is 0.34 for example. These numbers are represented differently 
internally inside the processor from even numbers, called integers. Since handling integers is 
much faster on computers, they are only used when necessary. I will give you an example. 
When counting people who have entered a building, you will never have 1.54 of a person. 
This is also important to note when doing math. What is 5 divided by 2? Actually the answer is
2 not 2.5 if you are using integers.

In the following example we get the value from one of the sensors, which is double. We then 
run some simple math to scale the value to show nicely on the screen. The the vale is 
converted to an integer, through something called casting. This is required as drawing on the 
screen will only accept integers. 
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using System;
using System.Threading;
using Microsoft.SPOT;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;
namespace GadgeteerBook
{
    public partial class Program
    {
        void ProgramStarted()
        {
            // Draw a border
            displayN18.SimpleGraphics.DisplayRectangle(
                GT.Color.Magenta, 2, GT.Color.Black, 1, 1, 100, 100);
            Thread GraphThread = new Thread(GraphLoop);
            GraphThread.Start();
        }
        void GraphLoop()
        {
            int x = 2;
            int LastLight = 0, LastJoyX = 0, LastJoyY = 0;
            while (true)
            {
                int Light = (int)(lightSense.ReadProportion() * 30) + 10; // Scale and cast 
                displayN18.SimpleGraphics.DisplayLine(GT.Color.Blue, 1,
                    x - 1, LastLight, x, Light); // Draw
                LastLight = Light;

                int JoyX = (int)(joystick.GetPosition().X * 15) + 40; // Scale and cast
                displayN18.SimpleGraphics.DisplayLine(GT.Color.Red, 1,
                    x - 1, LastJoyX, x, JoyX); // Draw
                LastJoyX = JoyX;

                int JoyY = (int)(joystick.GetPosition().Y * 15) + 70; // Scale and cast
                displayN18.SimpleGraphics.DisplayLine(GT.Color.Green, 1,
                    x - 1, LastJoyY, x, JoyY); // Draw
                LastJoyY = JoyY;
                if (x++ > 100)
                {
                    x = 2;
                    // Draw a border and clear the inside
                    displayN18.SimpleGraphics.DisplayRectangle(
                        GT.Color.Magenta, 2, GT.Color.Black, 1, 1, 100, 100);
                }
                Thread.Sleep(30);
            }
        }
    }
}
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13. Memory Storage
Storing files to SD cards and USB memory drives is easily accomplished in .NET Gadgeteer. 
In fact, you will be using FileStream, the same way files are handled on a computers. Lets 
read the light sensor voltage level and record it to a file every 50 milliseconds.

This code will wait for the button to be pressed and then it will start recording a Comma 
Separated Value (CSV) file, which can be opened in excel. Remember to put the SD card in 
before pressing the button and then press the button again before removing the card. The 
button has a small LED on it. When this LED is lit, the data is being recorded to the SD card 
and so it must not be removed.
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using System;
using System.IO;
using System.Collections;
using System.Threading;
using System.Text;

using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
    public partial class Program
    {
        Thread RecordingT;
        void ProgramStarted()
        {
            RecordingT = new Thread(Recorder);
            button.ButtonPressed += button_ButtonPressed;
        }

        void button_ButtonPressed(Button sender, Button.ButtonState state)
        {
            if (!button.IsLedOn)// LED is on when we are recording
            {
                button.TurnLedOn();
                RecordingT.Start();
            }else
                button.TurnLedOff();
        }
        void Recorder()
        {
            FileStream f = sdCard.StorageDevice.OpenWrite("Data.csv");
            int counter = 0;
            while (button.IsLedOn)
            {
                // Comma Separated Value, CSV file
                string Line = counter++.ToString() + "," + lightSense.ReadVoltage().ToString()
+ "\r\n";
                byte[] Data = Encoding.UTF8.GetBytes(Line);
                f.Write(Data, 0, Data.Length);
                Thread.Sleep(50);
            }
            f.Close();
        }
    }
}

By the Community for the Community Page 37 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/


GHI Electronics,LLC .NET Gadgeteer for Beginners

Networking

14. Networking
.NET Micro Framework includes Socket support, allowing users to communicate using 
TCP/UDP. There is also HTTP support for easy web page handling for clients and servers. As 
for security, SSL is supported on most devices but small devices have XTEA for simple data 
encryption. 

Creating an Internet of Things device with .NET Gadgeteer is very easy as users have all the 
low level networking they need through .NET Micro Framework but .NET Gadgeteer also 
extends the support with a user-friendly library for hosing pages.

14.1. Network Settings

We will keep this test as simple as possible. The device will be connected to a computer using
an Ethernet cable directly. We will open the network settings on the computer and set the IP 
address to static with an IP of 192.168.100.1 as shown in the following image.
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Now set the device with a static IP of 192.168.100.2. This can be done through code, but to 
keep this example simple, I will use FEZ Config to set the IP address, MFDeploy can also be 
used as well. Start by clicking the “Load Ethernet Config” button and modify the settings to 
match the image below then click apply.
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You will know if your settings were set properly as the examples provided later will print the IP
address on power up.

14.2. Pinging the Device

It's also a good idea to ping the device (network ICMP ping) to make sure everything is 
working before proceeding. We still need to load a minimal example to the device first. We will
start a project with the Ethernet ENC28 Module. This could also be WiFi or any other 
Networking module.

Now add and run this simple code:

using System;
using System.Collections;
using System.Threading;
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using System.Text;
using Microsoft.SPOT;
using Gadgeteer.Networking;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
    public partial class Program
    {
        void ProgramStarted()
        {
            ethernetENC28.UseThisNetworkInterface();
            //ethernetENC28.UseStaticIP("")
            ethernetENC28.NetworkUp += ethernetENC28_NetworkUp;
            ethernetENC28.NetworkDown += ethernetENC28_NetworkDown;
            new Thread(RunWebServer).Start();
        }

        void ethernetENC28_NetworkDown(GTM.Module.NetworkModule sender, 
GTM.Module.NetworkModule.NetworkState state)
        {
            Debug.Print("Network is down!");
        }

        void ethernetENC28_NetworkUp(GTM.Module.NetworkModule sender, 
GTM.Module.NetworkModule.NetworkState state)
        {
            Debug.Print("Network is up!");
            Debug.Print("My IP is: " + ethernetENC28.NetworkSettings.IPAddress);
        }

        void RunWebServer()
        {
            // Wait for the network...
            while(ethernetENC28.IsNetworkUp == false)
            {
                Debug.Print("Waiting...");
                Thread.Sleep(1000);
            }
        }
        
    }
}

Open the Command Prompt and ping the device, using ping 192.168.100.2
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If everything worked as planned then the output will look similar to this image.

14.3. A Known Bug!

There is a known bug in the .NET Gadgeteer code that needs to be fixed before we proceed. 
The bug is explained at https://gadgeteer.codeplex.com/workitem/1861 

Once the project is created with a networking module, the references list is automatically 
populated with the Gadgeteer.WebHost assembly. Remove this assembly manually from the 
list. Visit the .NET Gadgeteer repository and download the source code files found under: 

https://gadgeteer.codeplex.com/SourceControl/latest#Main/GadgeteerCore/Libraries/Core/We
bServer43/ 

Include all cs files from there in your project and then open Responder.cs and fix the bug as 
explained here: https://gadgeteer.codeplex.com/workitem/1861 

14.4. Network Controlled Devices

This code should be easy to use but you need a basic understanding of HTML, which is the 
way web pages are constructed. A quick internet search about HTML will help.

using System;
using System.Collections;
using System.Threading;
using System.Text;
using Microsoft.SPOT;
using Gadgeteer.Networking;
using GT = Gadgeteer;
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using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
    public partial class Program
    {
        byte[] HTML = Encoding.UTF8.GetBytes(
                         "<html><body>" +
                         "<h1>Hosted on .NET Gadgeteer</h1>" +
                         "<p>Lets scare someone!</p>" +
                         "<form action=\"\" method=\"post\">" +
                         "<input type=\"submit\" value=\"Toggle LED!\">" +
                         "</form>" +
                         "</body></html>");
        void ProgramStarted()
        {
            ethernetENC28.UseThisNetworkInterface();
            //ethernetENC28.UseStaticIP("")
            ethernetENC28.NetworkUp += ethernetENC28_NetworkUp;
            ethernetENC28.NetworkDown += ethernetENC28_NetworkDown;
            new Thread(RunWebServer).Start();
        }

        void ethernetENC28_NetworkDown(GTM.Module.NetworkModule sender, 
GTM.Module.NetworkModule.NetworkState state)
        {
            Debug.Print("Network is down!");
        }

        void ethernetENC28_NetworkUp(GTM.Module.NetworkModule sender, 
GTM.Module.NetworkModule.NetworkState state)
        {
            Debug.Print("Network is up!");
            Debug.Print("My IP is: " + ethernetENC28.NetworkSettings.IPAddress);
        }

        void RunWebServer()
        {
            // Wait for the network...
            while(ethernetENC28.IsNetworkUp == false)
            {
                Debug.Print("Waiting...");
                Thread.Sleep(1000);
            }
            // Start the server
            WebServer.StartLocalServer(ethernetENC28.NetworkSettings.IPAddress, 80);
            WebServer.DefaultEvent.WebEventReceived += DefaultEvent_WebEventReceived;
            while (true)
            {
                Thread.Sleep(1000);
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            }
        }
        bool LedState = false;
        void DefaultEvent_WebEventReceived(string path, WebServer.HttpMethod method, Responder
responder)
        {
            // We always send the same page back
            responder.Respond(HTML, "text/html;charset=utf-8");

            // If a button was clicked
            if (method == WebServer.HttpMethod.POST)
            {
                LedState = !LedState;// Toggle state
                Mainboard.SetDebugLED(LedState);
            }
        }
    }
}

In this example, a .NET Gadgeteer system is connected to a computer directly with IP 
addresses set as explained earlier. Open any web browser and type in the IP address of the 
device. This should show the page we are hosting:

The code above handles any page requested as a default, meaning accessing page 
http://192.168.100.2/about will result in the same page. Let us add a WebEvent that handles 
the about page with a different result. Test the code below by visiting: 
http://192.168.100.2/about 

By the Community for the Community Page 44 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/
http://192.168.100.2/about
http://192.168.100.2/about


GHI Electronics,LLC .NET Gadgeteer for Beginners

Networking

using System;
using System.Collections;
using System.Threading;
using System.Text;
using Microsoft.SPOT;
using Gadgeteer.Networking;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
    public partial class Program
    {
        byte[] HTML = Encoding.UTF8.GetBytes(
                         "<html><body>" +
                         "<h1>Hosted on .NET Gadgeteer</h1>" +
                         "<p>Lets scare someone!</p>" +
                         "<form action=\"\" method=\"post\">" +
                         "<input type=\"submit\" value=\"Toggle LED!\">" +
                         "</form>" +
                         "</body></html>");
        void ProgramStarted()
        {
            ethernetENC28.UseThisNetworkInterface();
            //ethernetENC28.UseStaticIP("")
            ethernetENC28.NetworkUp += ethernetENC28_NetworkUp;
            ethernetENC28.NetworkDown += ethernetENC28_NetworkDown;
            new Thread(RunWebServer).Start();
        }

        void ethernetENC28_NetworkDown(GTM.Module.NetworkModule sender, 
GTM.Module.NetworkModule.NetworkState state)
        {
            Debug.Print("Network is down!");
        }

        void ethernetENC28_NetworkUp(GTM.Module.NetworkModule sender, 
GTM.Module.NetworkModule.NetworkState state)
        {
            Debug.Print("Network is up!");
            Debug.Print("My IP is: " + ethernetENC28.NetworkSettings.IPAddress);
        }

        void RunWebServer()
        {
            // Wait for the network...
            while(ethernetENC28.IsNetworkUp == false)
            {
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                Debug.Print("Waiting...");
                Thread.Sleep(1000);
            }
            // Start the server
            WebServer.StartLocalServer(ethernetENC28.NetworkSettings.IPAddress, 80);
            WebEvent webEvent = WebServer.SetupWebEvent("about");
            webEvent.WebEventReceived += webEvent_WebEventReceived;
            WebServer.DefaultEvent.WebEventReceived += DefaultEvent_WebEventReceived;
            while (true)
            {
                Thread.Sleep(1000);
            }
        }
        bool LedState = false;
        void DefaultEvent_WebEventReceived(string path, WebServer.HttpMethod method, Responder
responder)
        {
            // We always send the same page back
            responder.Respond(HTML, "text/html;charset=utf-8");

            // If a button was clicked
            if (method == WebServer.HttpMethod.POST)
            {
                LedState = !LedState;// Toggle state
                Mainboard.SetDebugLED(LedState);
            }
        }

        void webEvent_WebEventReceived(string path, WebServer.HttpMethod method, Responder 
responder)
        {
            byte[] AboutHTML = Encoding.UTF8.GetBytes(
                        "<html><body>" +
                        "<p>.NET Gadgeteer is just amazing, and Freakin' Easy to use!</p>" +
                        "</body></html>");

            responder.Respond(AboutHTML, "text/html;charset=utf-8");
        }
    }
}
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15. Keeping it Tidy!
As your projects grows, keeping the modules and cables organized can be a problem. Here is
a picture of a project; with just five modules, things are looking twisted and tangled.

The alternative is to mount the modules on the “Holey Board” using some stand-offs and 
screws.
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16. Gadgeteering the non-Gadgeteer!
There are cases when a specific sensor is required to be used and there is no .NET 
Gadgeteer module for it. Fear not, almost anything can be wired to a .NET Gadgeteer system.
This socket map pin-out shows what kind of signals are available on sockets. For example, 
the A socket has 3 analog pins on pins 3, 4 and 5, with a GPIO on pin 6.
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This is the Legend for the pin-out:

If you are familiar with breadboards, using the breadboard module is probably the best route.

Assuming a sensor has an analog output that is suited for 3.3V levels found on Gadgeteer 
mainboards, the sensor can be directly connected to any socket type A, to pin 3, 4 or 5. If the 
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signal needs conditioning, perhaps the output from the sensor is 0V to 0.1V then the signal 
conditioning circuitry can be prototyped right on the breadboard.

There are other modules that can be used as well. Take the breakout module for example. 
This module comes in two styles. The first one is small, with holes for soldering wires or 
headers.

The second one has a terminal block. A small screwdriver can be used to tighten the screws 
that hold the wires in place.
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Another very tiny module is the G-Plug. This module plugs right on the socket and is exactly 
the same size as the box surrounding sockets on the mainboard. This allows multiple sockets 
to be plugged in without overlapping.
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16.1. Accessing the Pins

There are two ways to access the pins, using .NET Micro Framework directly or through 
the .NET Gadgeteer helpers. Going to NETMF directly is desired if the design will be moved 
to a non-Gadgeteer production. To determine which processor pin is connected to what pin on
what socket, the schematic will be needed. This cuts out the need to include the .NET 
Gadgeteer core but then the code will hard-coded to a processor pin on a certain board on a 
certain processor. Moving the pin will require going back to the schematics.

The other way to keep the code dynamic but .NET Gadgeteer software will be required. If this 
is unclear, I recommend sticking to .NET Gadgeteer projects. This is an example on how to 
obtain the processor pin on socket number 2, pin number 3.

Cpu.Pin pin = GT.Socket.GetSocket(2, true, null, null).CpuPins[3];

 

This document has further information:

https://www.ghielectronics.com/docs/144/plain-netmf-on-gadgeteer 

16.2. Not using Mainboards

The .NET Gadgeteer modules can also be used with non-Gadgeteer processor boards. The 
website details the pin-out of each module and provides the schematics. This example shows 
the Joystick Module connected to an Arduino board.
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17. Visual Basic
Developers that come from embedded development will usually prefer C# since C is the main 
language used. However, Visual Basic is also very popular and simpler to work with. Both 
languages have grown so much that they are as capable. A person will decide on one vs 
another only based on past experience, not capabilities. If you are not familiar with either, C# 
is recommended. When stepping outside .NET Micro Framework, to load a complex routing 
through RLP, C is the language to be used. Since C and C# are from the same family, 
learning C# will be the better path down the road.

Both languages are so close in capabilities that there are websites that can do auto 
conversion for you. You can also do the conversion manually if preferred. To test this, the 
converter on Telerik website was used to convert this simple code.

Here is the VB code followed by the C# code. Do you see the similarities?

Imports GT = Gadgeteer
Imports GTM = Gadgeteer.Modules

Namespace HelloLED
    Partial Public Class Program

        Private Sub ProgramStarted()
            Debug.Print("Hello PC")' Print something
            Mainboard.SetDebugLED(True)' Turn the LED on
        End Sub
    End Class
End Namespace

using System;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;

namespace HelloLED
{
    public partial class Program
    {
        void ProgramStarted()
        {
            Debug.Print("Hello PC");// Print something
            Mainboard.SetDebugLED(true);// Turn the LED on
        }
    }
}
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18. Prototype to Production
While .NET Gadgeteer makes prototyping extremely fast and convenient, it may not be 
suitable for mid to high run volumes. Bringing all needed components into one circuit board 
makes the final board smaller and brings the cost down.

18.1. The Hardware

GHI Electronics offers System on Module (SoM) or  System on Chip (SoC) solutions that 
run .NET Micro Framework. Those can be easily leveraged on the final product, where GHI 
Electronics maintain the .NET Micro Framework with free updates.

Minimal hardware design experience is still required to design circuit boards. The custom 
design can be assigned to a third party or to GHI Electronics. The cost is typically reasonable 
as the most complex part of the design is done, thanks to GHI Electronics' SoM and SoC.

18.2. The Software

.NET Gadgeteer is a helper software that runs on top of .NET Micro Framework. It is 
completely up to the designer to continue on using .NET Gadgeteer or go directly to .NET 
Micro framework. A mix of both maybe desired in some cases. The best part is that the code 
can be moved from the .NET Gadgeteer prototype to production board with no or minimal 
changes.

18.3. .NET Gadgeteer in Production

On designs where time to market is absolutely critical or volumes are low, shipping a product 
with .NET Gadgeteer hardware is desired. This is where 3D printing or laser cut acrylic can be
utilized to its fullest.
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