

G H I E l e c t r o n i c s

.NET Gadgeteer for Beginners
April 17, 2015 Getting Started

A “plug and play” for electronics, with a style!

*** Draft, in-progress document ***

Licensed under Creative Commons Share Alike 4.0

www.creativecommons.org/licenses/by-sa/4.0/

http://www.creativecommons.org/licenses/by-sa/4.0/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Table of Contents

Table of Contents
1.About the Book...3

1.1.Intended Audience..3
1.2.Disclaimer ..3

2.Introduction...4
2.1..NET Micro Framework...4
2.2.Visual Studio...5

3.Helpful Notes for Your Gadgets...6
4.LED Blinking, the easy way..7

4.1.Setting up..7
4.2.Coding the Software...11
4.3.Troubleshooting..15

5.LED Blinking, the right way..16
6.LED Blinking, using a module..17
7.Namespace..20
8.Reading a Digital Input...22
5. Traffic Light!...26
9.Drawing Simple Shapes...29

9.1.Glide..30
10.Drawing Images...31
11.Drawing Fonts..34
12.Reading an Analog Input..36
13.Memory Storage...38
14.Networking...40

14.1.Network Settings...40
14.2.Pinging the Device..42
14.3.A Known Bug!...44
14.4.Network Controlled Devices...44

15.Keeping it Tidy!...49
16.Gadgeteering the non-Gadgeteer!...50

16.1.Accessing the Pins...54
16.2.Not using Mainboards...54

17.Visual Basic..55
18.Prototype to Production..56

18.1.The Hardware...56
18.2.The Software..56
18.3..NET Gadgeteer in Production...56

Do Not Use Info 2 Page 2 of 54 www.ghielectronics.com

GHI Electronics,LLC .NET Gadgeteer for Beginners

About the Book

1. About the Book

1.1. Intended Audience

This book is for beginners wanting to get started on .NET Gadgeteer. No prior knowledge is
necessary, but some basic programming knowledge is helpful. There is a great deal of
information in this book for both hobbyists and engineers.

1.2. Disclaimer

This is a free book. Use it for your own knowledge and at your own risk. GHI Electronics is not
responsible for any damage or loss caused by the use of this book or by any information
provided. There is no guarantee any information in this book is valid.

By the Community for the Community Page 3 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Introduction

2. Introduction
*** Draft, in-progress document ***

.NET Gadgeteer is a rapid development platform that utilizes mainboards and plug-and-play
modules to build electronic projects, without the need for an electronics background. Take a
temperature logger application for example, this requires a mainboard, SD card module and
temperature module. As for the software, all the necessary drivers are included, significantly
reducing development time. The few lines of code needed for this example can be coded by
anyone with minimal software experience.

These specifications are introduced and maintained by Microsoft and the community for
standardizing the connections between mainboards and modules.

A .NET Gadgeteer module on the left, a .NET Gadgeteer mainboard on the right. A cable connects sockets
between the module and the mainboard.

2.1. .NET Micro Framework

.NET Gadgeteer software works on top of the .NET Micro Framework (NETMF) software.
NETMF includes thousands of methods, some are borrowed from the full .NET framework.
Meaning .NET Desktop developers already know how to program NETMF and .NET
Gadgeteer products. NETMF also extends the standard framework with numerous hardware-
related methods. This includes the ability to read and write to control pins allowing you to blink
some lights or to check if a button is pressed. GHI Electronics also extends the framework
with some exclusive features, such as using databases and USB Host.

By the Community for the Community Page 4 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Introduction

2.2. Visual Studio

.NET Gadgeteer developers will be using Microsoft's Visual Studio, one of the most popular
tools, by hobbyists and professionals. Even the free version of Visual Studio will work with
.NET Gadgeteer.

One of the many benefits of using Visual Studio is its IntelliSense. As you type, IntelliSense
understands what you might be trying to do and displays boxes with suggestions. That's why
we ship .NET Gadgeteer products without any programming manuals. It's that FEZ!

Learn about the history behind Fast and Easy (FEZ) here:
www.ghielectronics.com/technologies/fez

Let's say a Camera Module is being used. All you need to do is type the word "camera" and
hit "period" on the keyboard to see a list of supported methods available in the included
drivers.

The beauty of object-oriented programming at its finest.

Deploying programs to the device is done though a simple USB cable. What sets NETMF and
.NET Gadgeteer apart from other entry level electronic circuits is its ability to debug code.
Developers can step in code, pause executions, check variables and add breakpoints.

We've barely scratched the surface of what .NET Gadgeteer with NETMF and Visual Studio
can do. Lets put it all to the test and enjoy watching some blinking lights!

By the Community for the Community Page 5 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/
http://www.ghielectronics.com/technologies/fez

GHI Electronics,LLC .NET Gadgeteer for Beginners

Helpful Notes for Your Gadgets

3. Helpful Notes for Your Gadgets
As .NET Gadgeteer uses the latest professional tools on the market, a proper software
installation is necessary. Beginners should stick to the exact software versions listed on the
GHI Electronics' website or within this book.

To get started, install the exact software listed on GHI Electronics' support page:
https://www.ghielectronics.com/support/gadgeteer

The installation steps will include:
1. Microsoft Visual Studio (IDE and the compiler)
2. Microsoft NETMF Project System (plugin for Visual Studio to allow

deploying/debugging)
3. Microsoft NETMF SDK (framework libraries)
4. Microsoft's .NET Gadgeteer (graphical designer and project templates)
5. GHI Electronics' SDK (drivers for mainboards and modules plus GHI Electronics'

exclusive libraries)

This book's examples are made with modules available in the tinker kits from GHI Electronics;
however, any other .NET Gadgeteer hardware should work with minor changes.

By the Community for the Community Page 6 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/
https://www.ghielectronics.com/support/gadgeteer

GHI Electronics,LLC .NET Gadgeteer for Beginners

LED Blinking, the easy way

4. LED Blinking, the easy way
Now, let's develop and run a small application to make sure everything is setup properly. We'll
blink the LED that is found on every mainboard and print a debug string back to Visual
Studio's output window.

Tip: Please note that there is a troubleshooting section at the end of this chapter.

4.1. Setting up

Run Visual Studio and start a new project. Click on “FILE>New Project...”. You will have the
option of using Visual Basic or C#. This book will focus on C# but there is a Visual Basic
chapter near the end.

IMPORTANT: Use HelloLED for the project name. This is very important! I will explain why
later.

The next step is to select the proper mainboard. Make sure to also select the latest version
of .NET Micro Framework if this option is available. Some mainboards may support multiple

By the Community for the Community Page 7 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

LED Blinking, the easy way

versions of NETMF and we want to always use the latest if possible.

By the Community for the Community Page 8 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

LED Blinking, the easy way

Click the Create button and the .NET Gadgeteer Visual Designer's window will now appear
with the mainboard selected.

Tip: Highlight or click on any mainboard/module in the design surface and hit F1. This will
show a useful help page about that particular mainboard/module.

Click the Toolbox tab to show all the available modules and mainboards.

By the Community for the Community Page 9 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

LED Blinking, the easy way

We want to start by adding a power module to the design. This is also the module used for
debugging/deploying over USB. The power modules are always red and you should only have
one power module added an any design.

Find the module in your kit and locate its match in the designer. In my case, it is USB Client
SP module. Add the module in the designer by dragging it in or by double-clicking.

We are now ready to connect the module to the mainboard. You can right-click anywhere in
the designer area and click “connect all modules” or click on the socket on the module you
want to connect and the mainboard will automatically highlight the correct sockets. If you
noticed, the module's socket is labeled with D and on the mainboard the proper socket will
also be labeled D.

Now go back to your actual boards and make the same connection.

By the Community for the Community Page 10 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

LED Blinking, the easy way

Connect the power module to your computer using a standard USB Cable. Observe the red
light on the power module (red module).

4.2. Coding the Software

Now that you got this far, you deserve to have fun and enjoy .NET Gadgeteer. Remember to
save your project if you haven't done so already.

Locate the Solution Explorer window. You will find two C# files in there. One is auto-generated
by the designer surface, where you added the modules. Do not modify this file. Now click
Program.cs to view it. In the code, you will see a “ProgramStarted” method and inside of it
there is a debug statement. Everything in green is considered a comment.

Now, how does Visual Studio know which board to access, in case you have multiple. It also
needs to know how the board is connected (USB in our case). To set these settings, go to the
project properties.

By the way, my project is named HelloLED but yours can be anything else.

Click on the .NET Micro Framework tab and check the transport is set to USB and find your
device under devices. If you do not see the device then it is not plugged in properly.

By the Community for the Community Page 11 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

LED Blinking, the easy way

Now we are ready to deploy our code to the device. Click the start button or simply hit F5.

This compiles the code and deploys it to the device to be ran. You will see a lot of activity on
the output window, then the program will load and run. The debug print is generated by the
mainboard but the message is sent back to Visual Studio over the USB cable to be shown in
the output window.

By the Community for the Community Page 12 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

LED Blinking, the easy way

This is a good start but we don't have any blinking LEDs yet! Lets fix that. Start by stopping
the program by clicking the button or Shift + F5.

By the Community for the Community Page 13 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

LED Blinking, the easy way

Go back to Program.cs and edit it with the following code to blink the no-board LED. By the
way, LED stands for a light emitting diode.

using System;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;

namespace HelloLED
{
 public partial class Program
 {

 void ProgramStarted()
 {
 Debug.Print("Hello PC");
 while (true)
 {
 Mainboard.SetDebugLED(true);
 Thread.Sleep(1000); // leave it on for 1 second
 Mainboard.SetDebugLED(false);
 Thread.Sleep(500); // turn it of for 500 milliseconds
 }
 }
 }
}

Run the program again and the LED on the mainboard will be blinking.

You can now enjoy the debugging features. While the LED is blinking, set the cursor over the
first SetDebugLED line and hit F9 key. This should make that line red and will stop the
program at that line.

By the Community for the Community Page 14 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

LED Blinking, the easy way

The LED should be off at this exact moment. The line to turn the LED on has not executed
just yet. Now hit the F10 key for a single step and note the program and the LED.

4.3. Troubleshooting

Do not panic if the LED is not blinking by now. There are two common things that can go
wrong. First, is the USB driver. Did you see the device's name when going to the project
settings in Visual Studio? If not, check the device manager. The driver should install manually
when it's installing the GHI Electronics' SDK. Check the installation steps on the support
page. You can also point windows directly to the driver, located in the GHI Electronics folder
under program files, or where you selected to install the GHI SDK.

Second, is when the device is not loaded with the latest software. When this is the problem,
you should see a message on the output windows indicating firmware mismatch. The device
(the mainboard) has a resident software, called firmware that always lives on it. This is not the
application you develop and load onto the device. The firmware is developed and provided by
the mainboard manufacture. Consult with the mainboard manuals on how to update the
firmware.

Tip: GHI Electronics provides a utility software called FEZ Config to help with many tasks,
including firmware updates.

Finally, the software running the mainboard may have very tight loops making it difficult for
Visual Studio to latch to the device. Pressing the reset button at the same time as deploying
from Visual Studio helps. In extreme cases, the device need to be set in TinyBotter mode to
erase the application. This should not be needed if the system is properly programmed by
using events without using long tight loops and no sleep.

By the Community for the Community Page 15 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

LED Blinking, the right way

5. LED Blinking, the right way
In the previous chapter, we used a simple infinite loop to blink the LED. Using infinite loops is
an old practice that shouldn't be used with a modern system like .NET Gadgeteer. The correct
alternative is to start a timer and then toggle the LED every time the timer ticks.

using System;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;

namespace HelloLED
{
 public partial class Program
 {
 // This method is run when the mainboard is powered up or reset.
 void ProgramStarted()
 {
 GT.Timer timer = new GT.Timer(300); // Create a timer
 timer.Tick += timer_Tick; // Run the method timer_tick when the timer ticks

 timer.Start(); // Start the timer
 }

 bool state = false;
 void timer_Tick(GT.Timer timer)
 {
 state = !state; // Invert the state (to blink the LED)
 Mainboard.SetDebugLED(state); // Set the LED to state
 }
 }
}

This method may seem overly complex for blinking an LED (which is true), but complete
applications do a lot more than blinking an LED. I will give you a good example. How would
you blink the LED once every 765 milliseconds and debug print the word 'hello” once every
567 milliseconds? Try to accomplish this with a single loop. It will be extremely difficult. Now,
try it using individual timers.

Another concern solved by using timers is that the ProgramStarted method needs to complete
and return. Adding an infinite loop inside of it will prevent it from returning, causing the .NET
Gadgeteer core to not work properly.

By the Community for the Community Page 16 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

LED Blinking, using a module

6. LED Blinking, using a module
We are about to plug in the first module and use it, congratulations. This chapter will be using
the LED Strip module. The first thing to do would be to go back to the designer surface and
add the LED Strip module, or any other LED module you may have.

The instant name of the LED Strip module is shown right under the module. In this case it is
ledStrip. Go back to the code and type the module name to inspect what methods are
available through this module.

By the Community for the Community Page 17 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

LED Blinking, using a module

Going through the list, you should see the SetLed method. It should be very easy to modify
the code we had earlier to blink one of the LEDs on the module instead of the mainboard's
LED.

using System;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace HelloLED
{
 public partial class Program
 {
 // This method is run when the mainboard is powered up or reset.
 void ProgramStarted()
 {

 GT.Timer timer = new GT.Timer(300); // Create a timer
 timer.Tick += timer_Tick; // Run the method timer_tick when the timer ticks

 timer.Start(); // Start the timer
 }

 bool state = false;
 void timer_Tick(GT.Timer timer)
 {
 state = !state; // Invert the state (to blink the LED)
 ledStrip.SetLed(1, state); // Set the LED to state
 }
 }
}

Now, lets experiment with other available methods, like TurnAllLedsOff and TurnAllLedsOn.
Can you get these methods to blink all LEDs together?

By the Community for the Community Page 18 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

LED Blinking, using a module

using System;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace HelloLED
{
 public partial class Program
 {
 // This method is run when the mainboard is powered up or reset.
 void ProgramStarted()
 {

 GT.Timer timer = new GT.Timer(300); // Create a timer
 timer.Tick += timer_Tick; // Run the method timer_tick when the timer ticks

 timer.Start(); // Start the timer
 }

 bool state = false;
 void timer_Tick(GT.Timer timer)
 {
 state = !state; // Invert the state (to blink the LED)
 if (state)
 ledStrip.TurnAllLedsOn();
 else
 ledStrip.TurnAllLedsOff();
 }
 }
}

By the Community for the Community Page 19 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Namespace

7. Namespace
Namespaces are a way to organize and control code in large projects. It groups code sections
under a name space. When that space needs to be used, the “using” statement is utilized. All
examples provided earlier show multiple using statements at the beginning of the code. Do
not worry if you do not completely understand this, just remember to add the using statements
as shows in the example code for now.

What is important to understand now is the namespace of your actual program. When you
create a project called MyProject, Visual Studio will automatically set the namespace to
MyProject. If you manually modify the namespace of your code to something else then
your .NET Gadgeteer project will no longer compile. This will most likely happen when you
copy code from this book or the internet.

Tip: This is why in an earlier chapter it was important for you to name the project HelloLED.
Try to go back to the last example and change the namespace to something else, like
HelloLEDs. The error will look something like this image:

Always make sure to correct the namespace when copying examples from this book.
For the sake of simplicity, all following examples will be built with a project named
GadgeteerBook.

By the Community for the Community Page 20 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Reading a Digital Input

8. Reading a Digital Input
Lets connect a button and use it to control the LED found on the mainboard. Start a new
project and name it GadgeteerBook, as explained in the namespace chapter. Note that
everything is case sensitive when it comes to programming in C#, Gadgteerbook will not
work.

Here's our design of the hardware, set yours up the same way:

Remember that you can hit F1 while highlighting one of the modules for the available
methods. Lets do that for the button.

By the Community for the Community Page 21 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Reading a Digital Input

In previous examples, we used the modules with their default name. In this example, we will
change the button name from button to controller. Click on the name right under the module
and change as showing below.

Lets start with one of the earlier examples that we used to blink the on-board LED on the
mainboard and slightly modify it to only blink if the LED is pressed.

using System;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;

By the Community for the Community Page 22 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Reading a Digital Input

using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
 public partial class Program
 {
 // This method is run when the mainboard is powered up or reset.
 void ProgramStarted()
 {

 GT.Timer timer = new GT.Timer(300); // Create a timer
 timer.Tick += timer_Tick; // Run the method timer_tick when the timer ticks

 timer.Start(); // Start the timer
 }

 bool state = false;
 void timer_Tick(GT.Timer timer)
 {
 state = !state; // Invert the state (to blink the LED)
 if (controller.Pressed) // If button is pressed
 {
 Mainboard.SetDebugLED(state);
 }
 }
 }
}

By the Community for the Community Page 23 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Reading a Digital Input

While the code is correct, it does not take advantage of the button events. We can use less
system resources and code by properly using events. If a button pressed event fired, we will
start the blink timer. If the button was released, we will stop the timer.

using System;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
 public partial class Program
 {
 private GT.Timer timer = new GT.Timer(300); // Create a timer
 void ProgramStarted()
 {

 timer.Tick += timer_Tick; // Run the method timer_tick when the timer ticks
 controller.ButtonPressed += controller_ButtonPressed; // Button down event
 controller.ButtonReleased += controller_ButtonReleased; // Button up event
 }

 void controller_ButtonReleased(Button sender, Button.ButtonState state)
 {
 timer.Stop(); // Stop the timer
 }

 void controller_ButtonPressed(Button sender, Button.ButtonState state)
 {
 timer.Start(); // Start the timer
 }

 bool state = false;
 void timer_Tick(GT.Timer timer)
 {
 state = !state; // Invert the state (to blink the LED)
 Mainboard.SetDebugLED(state);
 }
 }
}

Can you use the button to control the LEDs on a module? What about the button controlling
the speed of blinking?

Hint: Change the timer speed (interval).

By the Community for the Community Page 24 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

5. Traffic Light!

5. Traffic Light!
In this chapter, we will bring it all together, a button with LEDs and even add some sounds
from the tunes module. Lets call this example a traffic light. When the button is pressed, the
light will automatically become red to stop the vehicles while the tunes module makes a
sound to allow pedestrians to cross safely!

The code properly uses two timers and never blocks the system with an infinite loop. Try to
analyze and modify the program.

By the Community for the Community Page 25 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

5. Traffic Light!

using System;
using System.Collections;
using System.Threading;
using Microsoft.SPOT;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
 public partial class Program
 {
 private enum LightState : uint
 {
 GREEN = 1 + 2, // 00 000 11
 YELLOW = 4 + 8 + 16, // 00 111 00
 RED = 32 + 64 // 11 000 00
 }
 int SecondsCounter = 0;
 int WalkingCounter = 0;
 GT.Timer CarTimer = new GT.Timer(1000);
 GT.Timer PedTimer = new GT.Timer(1000);

 void ProgramStarted()
 {
 CarTimer.Tick += CarTimer_Tick;
 PedTimer.Tick += PedTimer_Tick;
 button.ButtonPressed += ButtonPressed;
 CarTimer.Start();
 }

 public void ButtonPressed(Button sender, Button.ButtonState state)
 {
 // Stop the light at RED for cars
 CarTimer.Stop();
 ledStrip.SetBitmask((uint)LightState.RED);
 SecondsCounter = 0;
 // Allow pedestrians to walk for 5 seconds
 WalkingCounter = 5;
 PedTimer.Start();
 }

 void PedTimer_Tick(GT.Timer timer)
 {
 if (WalkingCounter-- < 0)
 {
 // Lsst round
 PedTimer.Stop();
 CarTimer.Start();
 // Make a onger sound
 tunes.Play(4000, 300);

 }else
 tunes.Play(4000, 50); // Make short sounds
 }

 private void CarTimer_Tick(GT.Timer timer)
 {
 if (SecondsCounter < 4) // start with Red
 {
 ledStrip.SetBitmask((uint)LightState.RED);

By the Community for the Community Page 26 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

5. Traffic Light!

 }
 else if (SecondsCounter < 7) // Red-> Green
 {
 ledStrip.SetBitmask((uint)LightState.GREEN);
 }
 else if (SecondsCounter < 8) // Green-> Yellow
 {
 ledStrip.SetBitmask((uint)LightState.YELLOW);
 }
 else // back to the beginning
 {
 SecondsCounter = 0;
 }
 SecondsCounter++; // Increment the seconds counter
 }
 }
}

Tip: If you are not interested in stepping through the code (debugging), it maybe faster to just
load the program without debugging. This is accomplished by pressing Shift + F5.

By the Community for the Community Page 27 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Drawing Simple Shapes

9. Drawing Simple Shapes
One of the great features of .NET Gadgeteer is in its graphics support. This graphical drawing
feature is inherited from the core of .NET Micro Framework, which supports drawing simple
shapes and also supports BMP, JPG and GIF images. Not only that, full font support is also
part of the package. More on fonts in the next chapter.

We will also be using Threads instead of Timers in this example. Note how the thread has an
infinite loop but it also has a sleep that allows the rest of the system to run properly.

using System;
using System.Threading;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
 public partial class Program
 {
 void ProgramStarted()
 {
 displayN18.SimpleGraphics.DisplayRectangle(
 GT.Color.Magenta, 2, GT.Color.Black, 1, 1, 100, 100);
 Thread Bouncer = new Thread(BouncerLoop);
 Bouncer.Start();
 }
 int x = 50, y = 50; // position
 int dx = 4, dy = 6; // speed and direction
 void BouncerLoop()
 {
 while (true)// Infinite loop
 {
 x += dx;
 y += dy;
 displayN18.SimpleGraphics.DisplayEllipse(
 GT.Color.Green, 1, GT.Color.Black, x, y, 8, 8);
 // Bounce back!
 if (x < 15 || x > 85)
 dx *= -1;
 if (y < 15 || y > 85)
 dy *= -1;
 Thread.Sleep(30);// Sleep for few milliseconds
 }
 }
 }
}

By the Community for the Community Page 28 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Drawing Simple Shapes

Tip: If Visual Studio failed to deploy an application after loading this program, simply click the
reset button on the mainboard as soon as you click run on visual studio. This is especially the
case with displays that use the SPI bus, like the Display N18 module.

9.1. Glide

For more advanced graphical application with beautiful user interfaces, GHI Electronics offer
a free and open source library, called Glide. Each screen, called a window, is constructed and
rendered from a simple XML text. It supports many components, like buttons and lists.

The website also hosts a window designer for glide. Drag and drop what you need and the
website will generate the XML text.

Learn more at https://www.ghielectronics.com/glide

By the Community for the Community Page 29 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/
https://www.ghielectronics.com/glide

GHI Electronics,LLC .NET Gadgeteer for Beginners

Drawing Images

10. Drawing Images
As mentioned earlier, the core .NET Micro Framework supports BMP, JPEG and GIF image
formats. This support is optional to the device manufacturers. Smaller devices with little
resources may or may not support one or more of the image formats. Check the device
manual to determine what image formats are supported on your device.

It is also important to note that images require a lot of memory. A simple 100x100 pixel image
will need about 40,000 bytes. This is not a problem for devices with a large amount of
memory but some .NET Gadgeteer devices have a very limited memory. These limited
devices will typically run everything fine but will struggle with graphics.

To keep the demo universal, we will use a tiny image that is 8x8 pixels in this demo. You can
use a larger image if your device has plenty of memory.

The next step is to add this bitmap as a resource in our program. It can also be loaded from
the SD card but we will cover memory cards later.

Find Resources.resx in the Solution Explorer and double-click it. Now drag the image into the
resource.

By the Community for the Community Page 30 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Drawing Images

Lets make this cute monster run on the screen!

using System;
using System.Threading;
using Microsoft.SPOT;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
 public partial class Program
 {
 void ProgramStarted()
 {
 // Draw a border
 displayN18.SimpleGraphics.DisplayRectangle(
 GT.Color.Magenta, 2, GT.Color.Black, 1, 1, 100, 100);
 Thread Bouncer = new Thread(BouncerLoop);
 Bouncer.Start();
 }
 int x = 50, y = 50; // position
 int dx = 4, dy = 6; // speed and direction
 void BouncerLoop()
 {
 // Get the bitmap resource
 Bitmap monster = new Bitmap(Resources.GetBytes(
 Resources.BinaryResources.TinyImg), Bitmap.BitmapImageType.Bmp);
 displayN18.SimpleGraphics.AutoRedraw = false; // Do not redraw
 while (true)
 {
 // Erase the old monster
 displayN18.SimpleGraphics.DisplayRectangle(
 GT.Color.Black,0,GT.Color.Black,x,y,8,8);
 x += dx; y += dy;
 displayN18.SimpleGraphics.DisplayImage(monster, x, y);
 // Draw to the screen
 displayN18.SimpleGraphics.Redraw();
 // Bounce back!
 if (x < 15 || x > 85)
 dx *= -1;
 if (y < 15 || y > 85)
 dy *= -1;
 Thread.Sleep(30);
 }
 }
 }
}

By the Community for the Community Page 31 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Drawing Fonts

11. Drawing Fonts
One of the great features of .NET Micro Framework is in the font support. You can take
almost any font of any size and convert it to a TinyFont and use it on any .NET Micro
Framework device with graphics support. This book will not explain how to convert fonts but
the default .NET Gadgeteer project will always include two fonts. Go back to the resource
viewer, by clicking on Resources.resx. From the drop down menu select Files. This should
show the two included fonts, NinaB and small.

To write to the screen, we would need to construct a Font object and then use that to draw on
the screen.

The example code is nearly identical to the one before, except it bounces the text “HI” inside
the box.

By the Community for the Community Page 32 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Drawing Fonts

using System;
using System.Threading;
using Microsoft.SPOT;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
 public partial class Program
 {
 void ProgramStarted()
 {
 // Draw a border
 displayN18.SimpleGraphics.DisplayRectangle(
 GT.Color.Magenta, 2, GT.Color.Black, 1, 1, 100, 100);
 Thread Bouncer = new Thread(BouncerLoop);
 Bouncer.Start();
 }
 int x = 50, y = 50; // position
 int dx = 4, dy = 6; // speed and direction
 void BouncerLoop()
 {
 // Get the bitmap resource
 Font MyFont = Resources.GetFont(Resources.FontResources.NinaB);
 displayN18.SimpleGraphics.AutoRedraw = false; // Do not redraw
 while (true)
 {
 // Erase the old text
 displayN18.SimpleGraphics.DisplayRectangle(
 GT.Color.Black, 0, GT.Color.Black, x, y, 14, 14);
 x += dx; y += dy;
 displayN18.SimpleGraphics.DisplayText("HI", MyFont, GT.Color.Yellow, x, y);
 // Draw to the screen
 displayN18.SimpleGraphics.Redraw();
 // Bounce back!
 if (x < 15 || x > 85)
 dx *= -1;
 if (y < 15 || y > 85)
 dy *= -1;
 Thread.Sleep(30);
 }
 }
 }
}

By the Community for the Community Page 33 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Reading an Analog Input

12. Reading an Analog Input
Digital inputs provide a logical state, either on or off. In code, the digital state is true and false
as learned before. On the other hand, analog inputs read the voltage level on a pin. This can
be a light sensor or a joystick. In this demo, we will show a simple graph on the screen
representing both, a light sensor and movement from an analog joystick. The code can be
modified to work with any other analog input.

If you are new to C#, this code has something new to learn. The value returned from the
sensors is a number that can carry a fraction called float or double. Double has more
accuracy than float. For example the value coming from the joystick can be anywhere from
-1.0 to 1.0, a possible output is 0.34 for example. These numbers are represented differently
internally inside the processor from even numbers, called integers. Since handling integers is
much faster on computers, they are only used when necessary. I will give you an example.
When counting people who have entered a building, you will never have 1.54 of a person.
This is also important to note when doing math. What is 5 divided by 2? Actually the answer is
2 not 2.5 if you are using integers.

In the following example we get the value from one of the sensors, which is double. We then
run some simple math to scale the value to show nicely on the screen. The the vale is
converted to an integer, through something called casting. This is required as drawing on the
screen will only accept integers.

By the Community for the Community Page 34 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Reading an Analog Input

using System;
using System.Threading;
using Microsoft.SPOT;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;
namespace GadgeteerBook
{
 public partial class Program
 {
 void ProgramStarted()
 {
 // Draw a border
 displayN18.SimpleGraphics.DisplayRectangle(
 GT.Color.Magenta, 2, GT.Color.Black, 1, 1, 100, 100);
 Thread GraphThread = new Thread(GraphLoop);
 GraphThread.Start();
 }
 void GraphLoop()
 {
 int x = 2;
 int LastLight = 0, LastJoyX = 0, LastJoyY = 0;
 while (true)
 {
 int Light = (int)(lightSense.ReadProportion() * 30) + 10; // Scale and cast
 displayN18.SimpleGraphics.DisplayLine(GT.Color.Blue, 1,
 x - 1, LastLight, x, Light); // Draw
 LastLight = Light;

 int JoyX = (int)(joystick.GetPosition().X * 15) + 40; // Scale and cast
 displayN18.SimpleGraphics.DisplayLine(GT.Color.Red, 1,
 x - 1, LastJoyX, x, JoyX); // Draw
 LastJoyX = JoyX;

 int JoyY = (int)(joystick.GetPosition().Y * 15) + 70; // Scale and cast
 displayN18.SimpleGraphics.DisplayLine(GT.Color.Green, 1,
 x - 1, LastJoyY, x, JoyY); // Draw
 LastJoyY = JoyY;
 if (x++ > 100)
 {
 x = 2;
 // Draw a border and clear the inside
 displayN18.SimpleGraphics.DisplayRectangle(
 GT.Color.Magenta, 2, GT.Color.Black, 1, 1, 100, 100);
 }
 Thread.Sleep(30);
 }
 }
 }
}

By the Community for the Community Page 35 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Memory Storage

13. Memory Storage
Storing files to SD cards and USB memory drives is easily accomplished in .NET Gadgeteer.
In fact, you will be using FileStream, the same way files are handled on a computers. Lets
read the light sensor voltage level and record it to a file every 50 milliseconds.

This code will wait for the button to be pressed and then it will start recording a Comma
Separated Value (CSV) file, which can be opened in excel. Remember to put the SD card in
before pressing the button and then press the button again before removing the card. The
button has a small LED on it. When this LED is lit, the data is being recorded to the SD card
and so it must not be removed.

By the Community for the Community Page 36 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Memory Storage

using System;
using System.IO;
using System.Collections;
using System.Threading;
using System.Text;

using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
 public partial class Program
 {
 Thread RecordingT;
 void ProgramStarted()
 {
 RecordingT = new Thread(Recorder);
 button.ButtonPressed += button_ButtonPressed;
 }

 void button_ButtonPressed(Button sender, Button.ButtonState state)
 {
 if (!button.IsLedOn)// LED is on when we are recording
 {
 button.TurnLedOn();
 RecordingT.Start();
 }else
 button.TurnLedOff();
 }
 void Recorder()
 {
 FileStream f = sdCard.StorageDevice.OpenWrite("Data.csv");
 int counter = 0;
 while (button.IsLedOn)
 {
 // Comma Separated Value, CSV file
 string Line = counter++.ToString() + "," + lightSense.ReadVoltage().ToString()
+ "\r\n";
 byte[] Data = Encoding.UTF8.GetBytes(Line);
 f.Write(Data, 0, Data.Length);
 Thread.Sleep(50);
 }
 f.Close();
 }
 }
}

By the Community for the Community Page 37 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Networking

14. Networking
.NET Micro Framework includes Socket support, allowing users to communicate using
TCP/UDP. There is also HTTP support for easy web page handling for clients and servers. As
for security, SSL is supported on most devices but small devices have XTEA for simple data
encryption.

Creating an Internet of Things device with .NET Gadgeteer is very easy as users have all the
low level networking they need through .NET Micro Framework but .NET Gadgeteer also
extends the support with a user-friendly library for hosing pages.

14.1. Network Settings

We will keep this test as simple as possible. The device will be connected to a computer using
an Ethernet cable directly. We will open the network settings on the computer and set the IP
address to static with an IP of 192.168.100.1 as shown in the following image.

By the Community for the Community Page 38 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Networking

Now set the device with a static IP of 192.168.100.2. This can be done through code, but to
keep this example simple, I will use FEZ Config to set the IP address, MFDeploy can also be
used as well. Start by clicking the “Load Ethernet Config” button and modify the settings to
match the image below then click apply.

By the Community for the Community Page 39 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Networking

You will know if your settings were set properly as the examples provided later will print the IP
address on power up.

14.2. Pinging the Device

It's also a good idea to ping the device (network ICMP ping) to make sure everything is
working before proceeding. We still need to load a minimal example to the device first. We will
start a project with the Ethernet ENC28 Module. This could also be WiFi or any other
Networking module.

Now add and run this simple code:

using System;
using System.Collections;
using System.Threading;

By the Community for the Community Page 40 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Networking

using System.Text;
using Microsoft.SPOT;
using Gadgeteer.Networking;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
 public partial class Program
 {
 void ProgramStarted()
 {
 ethernetENC28.UseThisNetworkInterface();
 //ethernetENC28.UseStaticIP("")
 ethernetENC28.NetworkUp += ethernetENC28_NetworkUp;
 ethernetENC28.NetworkDown += ethernetENC28_NetworkDown;
 new Thread(RunWebServer).Start();
 }

 void ethernetENC28_NetworkDown(GTM.Module.NetworkModule sender,
GTM.Module.NetworkModule.NetworkState state)
 {
 Debug.Print("Network is down!");
 }

 void ethernetENC28_NetworkUp(GTM.Module.NetworkModule sender,
GTM.Module.NetworkModule.NetworkState state)
 {
 Debug.Print("Network is up!");
 Debug.Print("My IP is: " + ethernetENC28.NetworkSettings.IPAddress);
 }

 void RunWebServer()
 {
 // Wait for the network...
 while(ethernetENC28.IsNetworkUp == false)
 {
 Debug.Print("Waiting...");
 Thread.Sleep(1000);
 }
 }

 }
}

Open the Command Prompt and ping the device, using ping 192.168.100.2

By the Community for the Community Page 41 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Networking

If everything worked as planned then the output will look similar to this image.

14.3. A Known Bug!

There is a known bug in the .NET Gadgeteer code that needs to be fixed before we proceed.
The bug is explained at https://gadgeteer.codeplex.com/workitem/1861

Once the project is created with a networking module, the references list is automatically
populated with the Gadgeteer.WebHost assembly. Remove this assembly manually from the
list. Visit the .NET Gadgeteer repository and download the source code files found under:

https://gadgeteer.codeplex.com/SourceControl/latest#Main/GadgeteerCore/Libraries/Core/We
bServer43/

Include all cs files from there in your project and then open Responder.cs and fix the bug as
explained here: https://gadgeteer.codeplex.com/workitem/1861

14.4. Network Controlled Devices

This code should be easy to use but you need a basic understanding of HTML, which is the
way web pages are constructed. A quick internet search about HTML will help.

using System;
using System.Collections;
using System.Threading;
using System.Text;
using Microsoft.SPOT;
using Gadgeteer.Networking;
using GT = Gadgeteer;

By the Community for the Community Page 42 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/
https://gadgeteer.codeplex.com/workitem/1861
https://gadgeteer.codeplex.com/SourceControl/latest#Main/GadgeteerCore/Libraries/Core/WebServer43/
https://gadgeteer.codeplex.com/SourceControl/latest#Main/GadgeteerCore/Libraries/Core/WebServer43/
https://gadgeteer.codeplex.com/workitem/1861

GHI Electronics,LLC .NET Gadgeteer for Beginners

Networking

using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
 public partial class Program
 {
 byte[] HTML = Encoding.UTF8.GetBytes(
 "<html><body>" +
 "<h1>Hosted on .NET Gadgeteer</h1>" +
 "<p>Lets scare someone!</p>" +
 "<form action=\"\" method=\"post\">" +
 "<input type=\"submit\" value=\"Toggle LED!\">" +
 "</form>" +
 "</body></html>");
 void ProgramStarted()
 {
 ethernetENC28.UseThisNetworkInterface();
 //ethernetENC28.UseStaticIP("")
 ethernetENC28.NetworkUp += ethernetENC28_NetworkUp;
 ethernetENC28.NetworkDown += ethernetENC28_NetworkDown;
 new Thread(RunWebServer).Start();
 }

 void ethernetENC28_NetworkDown(GTM.Module.NetworkModule sender,
GTM.Module.NetworkModule.NetworkState state)
 {
 Debug.Print("Network is down!");
 }

 void ethernetENC28_NetworkUp(GTM.Module.NetworkModule sender,
GTM.Module.NetworkModule.NetworkState state)
 {
 Debug.Print("Network is up!");
 Debug.Print("My IP is: " + ethernetENC28.NetworkSettings.IPAddress);
 }

 void RunWebServer()
 {
 // Wait for the network...
 while(ethernetENC28.IsNetworkUp == false)
 {
 Debug.Print("Waiting...");
 Thread.Sleep(1000);
 }
 // Start the server
 WebServer.StartLocalServer(ethernetENC28.NetworkSettings.IPAddress, 80);
 WebServer.DefaultEvent.WebEventReceived += DefaultEvent_WebEventReceived;
 while (true)
 {
 Thread.Sleep(1000);

By the Community for the Community Page 43 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Networking

 }
 }
 bool LedState = false;
 void DefaultEvent_WebEventReceived(string path, WebServer.HttpMethod method, Responder
responder)
 {
 // We always send the same page back
 responder.Respond(HTML, "text/html;charset=utf-8");

 // If a button was clicked
 if (method == WebServer.HttpMethod.POST)
 {
 LedState = !LedState;// Toggle state
 Mainboard.SetDebugLED(LedState);
 }
 }
 }
}

In this example, a .NET Gadgeteer system is connected to a computer directly with IP
addresses set as explained earlier. Open any web browser and type in the IP address of the
device. This should show the page we are hosting:

The code above handles any page requested as a default, meaning accessing page
http://192.168.100.2/about will result in the same page. Let us add a WebEvent that handles
the about page with a different result. Test the code below by visiting:
http://192.168.100.2/about

By the Community for the Community Page 44 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/
http://192.168.100.2/about
http://192.168.100.2/about

GHI Electronics,LLC .NET Gadgeteer for Beginners

Networking

using System;
using System.Collections;
using System.Threading;
using System.Text;
using Microsoft.SPOT;
using Gadgeteer.Networking;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;
using Gadgeteer.Modules.GHIElectronics;

namespace GadgeteerBook
{
 public partial class Program
 {
 byte[] HTML = Encoding.UTF8.GetBytes(
 "<html><body>" +
 "<h1>Hosted on .NET Gadgeteer</h1>" +
 "<p>Lets scare someone!</p>" +
 "<form action=\"\" method=\"post\">" +
 "<input type=\"submit\" value=\"Toggle LED!\">" +
 "</form>" +
 "</body></html>");
 void ProgramStarted()
 {
 ethernetENC28.UseThisNetworkInterface();
 //ethernetENC28.UseStaticIP("")
 ethernetENC28.NetworkUp += ethernetENC28_NetworkUp;
 ethernetENC28.NetworkDown += ethernetENC28_NetworkDown;
 new Thread(RunWebServer).Start();
 }

 void ethernetENC28_NetworkDown(GTM.Module.NetworkModule sender,
GTM.Module.NetworkModule.NetworkState state)
 {
 Debug.Print("Network is down!");
 }

 void ethernetENC28_NetworkUp(GTM.Module.NetworkModule sender,
GTM.Module.NetworkModule.NetworkState state)
 {
 Debug.Print("Network is up!");
 Debug.Print("My IP is: " + ethernetENC28.NetworkSettings.IPAddress);
 }

 void RunWebServer()
 {
 // Wait for the network...
 while(ethernetENC28.IsNetworkUp == false)
 {

By the Community for the Community Page 45 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Networking

 Debug.Print("Waiting...");
 Thread.Sleep(1000);
 }
 // Start the server
 WebServer.StartLocalServer(ethernetENC28.NetworkSettings.IPAddress, 80);
 WebEvent webEvent = WebServer.SetupWebEvent("about");
 webEvent.WebEventReceived += webEvent_WebEventReceived;
 WebServer.DefaultEvent.WebEventReceived += DefaultEvent_WebEventReceived;
 while (true)
 {
 Thread.Sleep(1000);
 }
 }
 bool LedState = false;
 void DefaultEvent_WebEventReceived(string path, WebServer.HttpMethod method, Responder
responder)
 {
 // We always send the same page back
 responder.Respond(HTML, "text/html;charset=utf-8");

 // If a button was clicked
 if (method == WebServer.HttpMethod.POST)
 {
 LedState = !LedState;// Toggle state
 Mainboard.SetDebugLED(LedState);
 }
 }

 void webEvent_WebEventReceived(string path, WebServer.HttpMethod method, Responder
responder)
 {
 byte[] AboutHTML = Encoding.UTF8.GetBytes(
 "<html><body>" +
 "<p>.NET Gadgeteer is just amazing, and Freakin' Easy to use!</p>" +
 "</body></html>");

 responder.Respond(AboutHTML, "text/html;charset=utf-8");
 }
 }
}

By the Community for the Community Page 46 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Keeping it Tidy!

15. Keeping it Tidy!
As your projects grows, keeping the modules and cables organized can be a problem. Here is
a picture of a project; with just five modules, things are looking twisted and tangled.

The alternative is to mount the modules on the “Holey Board” using some stand-offs and
screws.

By the Community for the Community Page 47 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Gadgeteering the non-Gadgeteer!

16. Gadgeteering the non-Gadgeteer!
There are cases when a specific sensor is required to be used and there is no .NET
Gadgeteer module for it. Fear not, almost anything can be wired to a .NET Gadgeteer system.
This socket map pin-out shows what kind of signals are available on sockets. For example,
the A socket has 3 analog pins on pins 3, 4 and 5, with a GPIO on pin 6.

By the Community for the Community Page 48 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Gadgeteering the non-Gadgeteer!

This is the Legend for the pin-out:

If you are familiar with breadboards, using the breadboard module is probably the best route.

Assuming a sensor has an analog output that is suited for 3.3V levels found on Gadgeteer
mainboards, the sensor can be directly connected to any socket type A, to pin 3, 4 or 5. If the

By the Community for the Community Page 49 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Gadgeteering the non-Gadgeteer!

signal needs conditioning, perhaps the output from the sensor is 0V to 0.1V then the signal
conditioning circuitry can be prototyped right on the breadboard.

There are other modules that can be used as well. Take the breakout module for example.
This module comes in two styles. The first one is small, with holes for soldering wires or
headers.

The second one has a terminal block. A small screwdriver can be used to tighten the screws
that hold the wires in place.

By the Community for the Community Page 50 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Gadgeteering the non-Gadgeteer!

Another very tiny module is the G-Plug. This module plugs right on the socket and is exactly
the same size as the box surrounding sockets on the mainboard. This allows multiple sockets
to be plugged in without overlapping.

By the Community for the Community Page 51 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Gadgeteering the non-Gadgeteer!

16.1. Accessing the Pins

There are two ways to access the pins, using .NET Micro Framework directly or through
the .NET Gadgeteer helpers. Going to NETMF directly is desired if the design will be moved
to a non-Gadgeteer production. To determine which processor pin is connected to what pin on
what socket, the schematic will be needed. This cuts out the need to include the .NET
Gadgeteer core but then the code will hard-coded to a processor pin on a certain board on a
certain processor. Moving the pin will require going back to the schematics.

The other way to keep the code dynamic but .NET Gadgeteer software will be required. If this
is unclear, I recommend sticking to .NET Gadgeteer projects. This is an example on how to
obtain the processor pin on socket number 2, pin number 3.

Cpu.Pin pin = GT.Socket.GetSocket(2, true, null, null).CpuPins[3];

This document has further information:

https://www.ghielectronics.com/docs/144/plain-netmf-on-gadgeteer

16.2. Not using Mainboards

The .NET Gadgeteer modules can also be used with non-Gadgeteer processor boards. The
website details the pin-out of each module and provides the schematics. This example shows
the Joystick Module connected to an Arduino board.

By the Community for the Community Page 52 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/
https://www.ghielectronics.com/docs/144/plain-netmf-on-gadgeteer

GHI Electronics,LLC .NET Gadgeteer for Beginners

Visual Basic

17. Visual Basic
Developers that come from embedded development will usually prefer C# since C is the main
language used. However, Visual Basic is also very popular and simpler to work with. Both
languages have grown so much that they are as capable. A person will decide on one vs
another only based on past experience, not capabilities. If you are not familiar with either, C#
is recommended. When stepping outside .NET Micro Framework, to load a complex routing
through RLP, C is the language to be used. Since C and C# are from the same family,
learning C# will be the better path down the road.

Both languages are so close in capabilities that there are websites that can do auto
conversion for you. You can also do the conversion manually if preferred. To test this, the
converter on Telerik website was used to convert this simple code.

Here is the VB code followed by the C# code. Do you see the similarities?

Imports GT = Gadgeteer
Imports GTM = Gadgeteer.Modules

Namespace HelloLED
 Partial Public Class Program

 Private Sub ProgramStarted()
 Debug.Print("Hello PC")' Print something
 Mainboard.SetDebugLED(True)' Turn the LED on
 End Sub
 End Class
End Namespace

using System;
using GT = Gadgeteer;
using GTM = Gadgeteer.Modules;

namespace HelloLED
{
 public partial class Program
 {
 void ProgramStarted()
 {
 Debug.Print("Hello PC");// Print something
 Mainboard.SetDebugLED(true);// Turn the LED on
 }
 }
}

By the Community for the Community Page 53 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC .NET Gadgeteer for Beginners

Prototype to Production

18. Prototype to Production
While .NET Gadgeteer makes prototyping extremely fast and convenient, it may not be
suitable for mid to high run volumes. Bringing all needed components into one circuit board
makes the final board smaller and brings the cost down.

18.1. The Hardware

GHI Electronics offers System on Module (SoM) or System on Chip (SoC) solutions that
run .NET Micro Framework. Those can be easily leveraged on the final product, where GHI
Electronics maintain the .NET Micro Framework with free updates.

Minimal hardware design experience is still required to design circuit boards. The custom
design can be assigned to a third party or to GHI Electronics. The cost is typically reasonable
as the most complex part of the design is done, thanks to GHI Electronics' SoM and SoC.

18.2. The Software

.NET Gadgeteer is a helper software that runs on top of .NET Micro Framework. It is
completely up to the designer to continue on using .NET Gadgeteer or go directly to .NET
Micro framework. A mix of both maybe desired in some cases. The best part is that the code
can be moved from the .NET Gadgeteer prototype to production board with no or minimal
changes.

18.3. .NET Gadgeteer in Production

On designs where time to market is absolutely critical or volumes are low, shipping a product
with .NET Gadgeteer hardware is desired. This is where 3D printing or laser cut acrylic can be
utilized to its fullest.

By the Community for the Community Page 54 of 54 www.GHIElectronics.com

http://www.ghielectronics.com/

	1. About the Book
	1.1. Intended Audience
	1.2. Disclaimer

	2. Introduction
	2.1. .NET Micro Framework
	2.2. Visual Studio

	3. Helpful Notes for Your Gadgets
	4. LED Blinking, the easy way
	4.1. Setting up
	4.2. Coding the Software
	4.3. Troubleshooting

	5. LED Blinking, the right way
	6. LED Blinking, using a module
	7. Namespace
	8. Reading a Digital Input
	5. Traffic Light!
	9. Drawing Simple Shapes
	9.1. Glide

	10. Drawing Images
	11. Drawing Fonts
	12. Reading an Analog Input
	13. Memory Storage
	14. Networking
	14.1. Network Settings
	14.2. Pinging the Device
	14.3. A Known Bug!
	14.4. Network Controlled Devices

	15. Keeping it Tidy!
	16. Gadgeteering the non-Gadgeteer!
	16.1. Accessing the Pins
	16.2. Not using Mainboards

	17. Visual Basic
	18. Prototype to Production
	18.1. The Hardware
	18.2. The Software
	18.3. .NET Gadgeteer in Production

